Oxidation of the Styrene Epoxide – Hydroquinone – Copper(II) Chloride Ternary System in a Methanol Solution
- Authors: Petrov L.V.1, Solyanikov V.M.1
-
Affiliations:
- Federal Research Center for Problems of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences
- Issue: Vol 43, No 9 (2024)
- Pages: 53-60
- Section: Kinetics and mechanism of chemical reactions, catalysis
- URL: https://cijournal.ru/0207-401X/article/view/680966
- DOI: https://doi.org/10.31857/S0207401X24090062
- ID: 680966
Cite item
Abstract
The consumption of styrene epoxide (SE) and hydroquinone (HQ) in a ternary TrS system (SE – HQ – Cu(II)) in an oxygen atmosphere in a methanol solution was studied. Oxygen uptake by the triple system SE – HQ – CuCl2 was studied manometrically. Expression of velocity in terms of reagent concentrations V = k [Cu(II)]1 [HQ]0 [SE]0, the effective oxidation rate constant k = 1.82×105 exp(– 40 kJ mol-1/RT) s-1, (308–323) K. The mechanism of oxidation of TrS is discussed.
Keywords
Full Text

About the authors
L. V. Petrov
Federal Research Center for Problems of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences
Author for correspondence.
Email: plv@acp.ac.ru
Russian Federation, Chernogolovka
V. M. Solyanikov
Federal Research Center for Problems of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences
Email: plv@acp.ac.ru
Russian Federation, Chernogolovka
References
- Ch. Schneider, Synthesis 23, 3919 (2006). https://doi.org/ 10.1055/s-2006-950348
- G. Sabitha, R. Satheesh Babu, M. Rajkumar, Ch. Srinivas Reddy, J.S. Yadav, Tetrahedron Lett. 42, 3955 (2001). https://doi.org/10.1016/S0040-4039(01)00622-0
- Y.-X. Zhou, Y.-Z. Chen, Y. Hu, G. Huang, S.-H. Yu, H.-L. Jiang, Chem. Eur. J. 20, 1 (2014). https://doi.org/ 10.1002/chem. 201404104
- Y. Zhang, M. Wang, P. Li, L. Wang, Org. Lett. 14, 2206 (2012). https://doi.org/10.1021/o1300391t
- D.A. Denisov, R.A. Novikov, Y.V. Tomilov, Russ. Chem. Bull. 70, 1568 (2021). https://doi.org/10.1007/S11172-021-3253-9
- R.E. Parker, N.S. Isaacs, Chem. Rev. 53, 737 (1959). https://doi.org/10.1021/cr50028a006
- A.M. Ross, T.M. Pohl, K. Piazza, M. Thomas, B. Fox, D.L. Whalen, J. Am. Chem. Soc. 104, 1658 (1982). https://doi.org/10.1021/ja00370a035
- A. Lundin, I. Panas, E. Ahlberg, J. Phys. Chem. A 111, 9087 (2007). https://doi.org/10.1021/jp073285b
- P.O. Wennberg, D.G. VanderVelde, N.C. Eddingsaas, J. Phys. Chem. A 114, 8106 (2010). https://doi.org/10.1021/jp103907c
- Z. Huan, Ch. Yung, Z. Ma, E.R. Gainer, D. Li, J. Phys. Chem. A 118, 1557 (2014). https://doi.org/10.1021/jp501310z
- L.V. Petrov, V.M. Solyanikov, Russ. Chem. Bull. 64, 107 (2015).
- L.V. Petrov, V.M. Solyanikov, Russ. J. Phys. Chem. B 10, 764 (2016). https://doi.org/10.1134/S1990793116050225
- L.V. Petrov, V.M. Solyanikov, Pet. Chem. 57, 734 (2017). https://doi.org/10.1134/S0965544117080114
- L.V. Petrov, V.M. Solyanikov, Russ. J. Phys. Chem. B 12, 1003 (2018). https://doi.org/10.1134/S1990793118060179
- L.V. Petrov, V.M. Solyanikov, Russ. Chem. Bull. 69, 1869 (2020). https://doi.org/10.1007/S11172-020-2972-7
- L.V. Petrov, V.M. Solyanikov, Russ. J. Phys. Chem. B 15, 599 (2021). https://doi.org/10.1134/S1990793121040084
- V.A. Menshov, V.D. Kancheva, O.L. Yablonskaya, A.V. Trofimov, Russ. J. Phys. Chem. B 15, 108 (2021). https://doi.org/10.1134/S1990793121010231
- I.F. Rusina, T.L. Veprintsev, R.F. Vasil’ev, Russ. J. Phys. Chem. B 16, 50 (2022). https://doi.org/10.1134/S1990793122010274
- L.V. Petrov, V.M. Solyanikov, Russ. J. Phys. Chem. B 15, 960 (2021). https://doi.org/10.1134/S1990793121060075
- L.V. Petrov, B. L. Psikha, V.M. Solyanikov, Pet. Chem. 49, 263 (2009).
- L.V. Petrov, V.M. Solyanikov, Pet. Chem. 39, 107 (1999).
- L.V. Petrov, V.M. Solyanikov, Russ. J. Phys. Chem. B 17, 1259 (2023). https://doi.org/10.1134/S1990793123060234
Supplementary files
