Non-covalent interaction of carbon, silicon and germanium atoms
- Autores: Sokurov A.A.1, Rekhviashvili S.S.1
-
Afiliações:
- Institute of Applied Mathematics and Automation – the filial branch of Federal State Budgetary Scientific Establishment “Federal Scientific Center “Kabardin-Balkar Scientific Center of Russian Academy of Sciences”
- Edição: Volume 43, Nº 9 (2024)
- Páginas: 19-28
- Seção: СТРОЕНИЕ ХИМИЧЕСКИХ СОЕДИНЕНИЙ, КВАНТОВАЯ ХИМИЯ, СПЕКТРОСКОПИЯ
- URL: https://cijournal.ru/0207-401X/article/view/680962
- DOI: https://doi.org/10.31857/S0207401X24090029
- ID: 680962
Citar
Resumo
From first principles (electron gas approximation) the calculation of non-covalent interaction potentials for homo- and heteroatomic pairs of carbon, silicon and germanium without the formation of valence chemical bonds was carried out. The calculations took into account the coulomb, kinetic, exchange, and correlation contributions to the interaction energy. The electron density was set taking into account the shell structure of atoms in the Hartree-Fock approximation. The parameters of the Lennard-Jones and Morse potentials and the constants of the dispersion interaction are calculated for all cases. It is shown that for non-covalent interaction the known empirical rules of Lorentz-Berthelot combination for potential parameters are not always fulfilled. Based on the calculations a new generalized potential is proposed that can be used in molecular dynamics and Monte Carlo simulations, as well as in constructing equations of state. Calculations of the second virial coefficient for monatomic carbon vapor are carried out.
Texto integral

Sobre autores
A. Sokurov
Institute of Applied Mathematics and Automation – the filial branch of Federal State Budgetary Scientific Establishment “Federal Scientific Center “Kabardin-Balkar Scientific Center of Russian Academy of Sciences”
Email: rsergo@mail.ru
Rússia, Nalchik
S. Rekhviashvili
Institute of Applied Mathematics and Automation – the filial branch of Federal State Budgetary Scientific Establishment “Federal Scientific Center “Kabardin-Balkar Scientific Center of Russian Academy of Sciences”
Autor responsável pela correspondência
Email: rsergo@mail.ru
Rússia, Nalchik
Bibliografia
- Yu.S. Barash, Van Der Waals forces. M.: Nauka, 1988. (In Russian)
- L.I. Matienko, E.M. Mil, V.I. Binyukov, Russ. J. Phys. Chem. B 14, 559 (2020). https://doi.org/10.1134/S1990793120030227
- D.C. Rapaport, The Art of molecular dynamics simulation. N.Y.: Cambridge University Press, (2004).
- D. Potter, Computational Physics. N.Y.: J. Wiley, (1973).
- M. Rieth, Nano-engineering in science and technology: An introduction to the world of nano-design. Singapore: World Scientific, (2003).
- I.P. Suzdalev, Nanotechnology: physical chemistry of nanoclusters, nanostructures and nanomaterials. M.: KomKniga, (2006). (In Russian)
- A.I. Gusev, Nanomaterials, nanostructures, nanotechnologies. M.: Fizmatlit., (2007). (In Russian)
- K. Kadau, J.L. Barber, T.C. Germann et al., Philos. Trans. R. Soc., A 368, 1547 (2010). https://doi.org/10.1098/rsta.2009.0218
- I.A. Cosden, J.R. Lukes, Comput. Phys. Commun. 184, 1958 (2013). https://doi. org/10.1016/j.cpc.2013.03.009
- F.O. Goodman, H. Y. Wachman, Dynamics of Gas-surface Scattering. Elsevier Science: Academic Press, (2012).
- I.G. Kaplan, Intermolecular interactions. Physical interpretation, computer calculations and model potentials. Chichester: John Wiley & Sons, (2006).
- R.G. Parr, W. Yang, Density-functional theory of atoms and molecules. Oxford: Oxford University Press, (1989).
- H. Balamane, T. Halicioglu, W.A. Tiller, Phys. Rev. B 46, 2250 (1992). https://doi.org/10.1103/PhysRevB.46.2250
- P. Erhart, K. Albe, Phys. Rev. B 71, 035211 (2005). https://doi.org/10.1103/PhysRevB.71.035211
- E.H. Kim, Y.H. Shin, B. J. Lee, Calphad 32, 34 (2008). https://doi.org/10.1016/j.calphad.2007.12.003
- X. Chu, A. Dalgarno, J. Chem. Phys. 121, 4083 (2004). https://doi.org/10.1063/1.1779576
- G.X. Zhang, A. Tkatchenko, J. Paier, et al., Phys. Rev. Lett. 107, 245501 (2011). https://doi.org/10.1103/PhysRevLett.107.245501
- R.G. Gordon, Y.S. Kim, J. Chem. Phys. 56, 3122 (1972). https://doi.org/10.1063/1.1677649
- M. Waldman, R. G. Gordon, J. Chem. Phys. 71, 1325 (1972). https://doi.org/10.1063/1.438433
- G.V. Dedkov, Phys.-Usp. 38, 877 (1995). https://doi. org/10.1070/PU1995v038n08ABEH000100
- T.G. Strand, R.A. Bonham, J. Chem. Phys. 40, 1686 (1964). https://doi.org/10.1063/1.1725380
- M. Abramowitz, I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables. N.Y.: Dover Publications, (1972).
- J.A. Barker, A. Pompe, Aust. J. Chem. 21 (7), 1683 (1967). https://doi. org/10.1071/CH9681683
- K.T. Tang, J. P. Toennies, J. Chem. Phys. 118 (11), 4976 (2003). https://doi. org/10.1063/1.1543944
- M.N. Magomedov, Phys. Solid State 62 (7), 1126 (2020). https://doi.org/10.1134/S1063783420070136
- G.Z. Sharafutdinov, Moscow Univ. Mech. Bull. 72 (6), 129 (2017). https://doi.org/10.3103/S0027133017060012
- S.S. Rekhviashvili, M.M. Bukhurova, A.A. Sokurov, Russ. J. Inorg. Chem. 65, 1373 (2020). https://doi.org/10.1134/S0036023620090132
- S.S. Rekhviashvili, Matem. Mod. 5 (2), 62 (2003). (In Russian)
- N.V. Dokhlikova, A.K. Gatin, S.Yu. Sarvadiy et al., Russ. J. Phys. Chem. B 15, 732 (2021). https://doi.org/10.1134/S1990793121040023
- N.V. Dokhlikova, A.K. Gatin, S.Yu. Sarvadiy et al., Russ. J. Phys. Chem. B 16, 361 (2022). https://doi.org/10.1134/S1990793122020166
- N.V. Dokhlikova, S.A. Ozerin, S.V. Doronin et al., Russ. J. Phys. Chem. B 16, 461 (2022). https://doi.org/10.1134/S1990793122030137
- N.V. Dokhlikova, A.K. Gatin, S.Yu. Sarvadiy, et al., Russ. J. Phys. Chem. B 16, 772 (2022). https://doi.org/10.1134/S1990793122040042
- E.I. Rudenko, N.V. Dohlikova, A.K. Gatin, et al., Russ. J. Phys. Chem. B 17, 845 (2023). https://doi.org/10.1134/S1990793123040164
- P. Pyykkö, M. Atsumi, Chem. Eur. J. 15, 186 (2009). https://doi.org/10.1002/chem.200800987
- E.A. Mason, T.H. Spurling, The virial equations of state. Oxford: Pergamon Press, (1969).
- M. Edalat, S. S. Lan, F. Pang, G. A. Mansoori, Int. J. Thermophys. 1, 177 (1980). https://doi.org/10.1007/BF00504519
- I. Nitzke, S. Pohl, M. Thol, R. Span, J. Vrabec, Mol. Phys. 120 (11), 1 (2022). https://doi.org/10.1080/00268976.2022.2078240
Arquivos suplementares
