Non-covalent interaction of carbon, silicon and germanium atoms

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

From first principles (electron gas approximation) the calculation of non-covalent interaction potentials for homo- and heteroatomic pairs of carbon, silicon and germanium without the formation of valence chemical bonds was carried out. The calculations took into account the coulomb, kinetic, exchange, and correlation contributions to the interaction energy. The electron density was set taking into account the shell structure of atoms in the Hartree-Fock approximation. The parameters of the Lennard-Jones and Morse potentials and the constants of the dispersion interaction are calculated for all cases. It is shown that for non-covalent interaction the known empirical rules of Lorentz-Berthelot combination for potential parameters are not always fulfilled. Based on the calculations a new generalized potential is proposed that can be used in molecular dynamics and Monte Carlo simulations, as well as in constructing equations of state. Calculations of the second virial coefficient for monatomic carbon vapor are carried out.

Texto integral

Acesso é fechado

Sobre autores

A. Sokurov

Institute of Applied Mathematics and Automation – the filial branch of Federal State Budgetary Scientific Establishment “Federal Scientific Center “Kabardin-Balkar Scientific Center of Russian Academy of Sciences”

Email: rsergo@mail.ru
Rússia, Nalchik

S. Rekhviashvili

Institute of Applied Mathematics and Automation – the filial branch of Federal State Budgetary Scientific Establishment “Federal Scientific Center “Kabardin-Balkar Scientific Center of Russian Academy of Sciences”

Autor responsável pela correspondência
Email: rsergo@mail.ru
Rússia, Nalchik

Bibliografia

  1. Yu.S. Barash, Van Der Waals forces. M.: Nauka, 1988. (In Russian)
  2. L.I. Matienko, E.M. Mil, V.I. Binyukov, Russ. J. Phys. Chem. B 14, 559 (2020). https://doi.org/10.1134/S1990793120030227
  3. D.C. Rapaport, The Art of molecular dynamics simulation. N.Y.: Cambridge University Press, (2004).
  4. D. Potter, Computational Physics. N.Y.: J. Wiley, (1973).
  5. M. Rieth, Nano-engineering in science and technology: An introduction to the world of nano-design. Singapore: World Scientific, (2003).
  6. I.P. Suzdalev, Nanotechnology: physical chemistry of nanoclusters, nanostructures and nanomaterials. M.: KomKniga, (2006). (In Russian)
  7. A.I. Gusev, Nanomaterials, nanostructures, nanotechnologies. M.: Fizmatlit., (2007). (In Russian)
  8. K. Kadau, J.L. Barber, T.C. Germann et al., Philos. Trans. R. Soc., A 368, 1547 (2010). https://doi.org/10.1098/rsta.2009.0218
  9. I.A. Cosden, J.R. Lukes, Comput. Phys. Commun. 184, 1958 (2013). https://doi. org/10.1016/j.cpc.2013.03.009
  10. F.O. Goodman, H. Y. Wachman, Dynamics of Gas-surface Scattering. Elsevier Science: Academic Press, (2012).
  11. I.G. Kaplan, Intermolecular interactions. Physical interpretation, computer calculations and model potentials. Chichester: John Wiley & Sons, (2006).
  12. R.G. Parr, W. Yang, Density-functional theory of atoms and molecules. Oxford: Oxford University Press, (1989).
  13. H. Balamane, T. Halicioglu, W.A. Tiller, Phys. Rev. B 46, 2250 (1992). https://doi.org/10.1103/PhysRevB.46.2250
  14. P. Erhart, K. Albe, Phys. Rev. B 71, 035211 (2005). https://doi.org/10.1103/PhysRevB.71.035211
  15. E.H. Kim, Y.H. Shin, B. J. Lee, Calphad 32, 34 (2008). https://doi.org/10.1016/j.calphad.2007.12.003
  16. X. Chu, A. Dalgarno, J. Chem. Phys. 121, 4083 (2004). https://doi.org/10.1063/1.1779576
  17. G.X. Zhang, A. Tkatchenko, J. Paier, et al., Phys. Rev. Lett. 107, 245501 (2011). https://doi.org/10.1103/PhysRevLett.107.245501
  18. R.G. Gordon, Y.S. Kim, J. Chem. Phys. 56, 3122 (1972). https://doi.org/10.1063/1.1677649
  19. M. Waldman, R. G. Gordon, J. Chem. Phys. 71, 1325 (1972). https://doi.org/10.1063/1.438433
  20. G.V. Dedkov, Phys.-Usp. 38, 877 (1995). https://doi. org/10.1070/PU1995v038n08ABEH000100
  21. T.G. Strand, R.A. Bonham, J. Chem. Phys. 40, 1686 (1964). https://doi.org/10.1063/1.1725380
  22. M. Abramowitz, I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables. N.Y.: Dover Publications, (1972).
  23. J.A. Barker, A. Pompe, Aust. J. Chem. 21 (7), 1683 (1967). https://doi. org/10.1071/CH9681683
  24. K.T. Tang, J. P. Toennies, J. Chem. Phys. 118 (11), 4976 (2003). https://doi. org/10.1063/1.1543944
  25. M.N. Magomedov, Phys. Solid State 62 (7), 1126 (2020). https://doi.org/10.1134/S1063783420070136
  26. G.Z. Sharafutdinov, Moscow Univ. Mech. Bull. 72 (6), 129 (2017). https://doi.org/10.3103/S0027133017060012
  27. S.S. Rekhviashvili, M.M. Bukhurova, A.A. Sokurov, Russ. J. Inorg. Chem. 65, 1373 (2020). https://doi.org/10.1134/S0036023620090132
  28. S.S. Rekhviashvili, Matem. Mod. 5 (2), 62 (2003). (In Russian)
  29. N.V. Dokhlikova, A.K. Gatin, S.Yu. Sarvadiy et al., Russ. J. Phys. Chem. B 15, 732 (2021). https://doi.org/10.1134/S1990793121040023
  30. N.V. Dokhlikova, A.K. Gatin, S.Yu. Sarvadiy et al., Russ. J. Phys. Chem. B 16, 361 (2022). https://doi.org/10.1134/S1990793122020166
  31. N.V. Dokhlikova, S.A. Ozerin, S.V. Doronin et al., Russ. J. Phys. Chem. B 16, 461 (2022). https://doi.org/10.1134/S1990793122030137
  32. N.V. Dokhlikova, A.K. Gatin, S.Yu. Sarvadiy, et al., Russ. J. Phys. Chem. B 16, 772 (2022). https://doi.org/10.1134/S1990793122040042
  33. E.I. Rudenko, N.V. Dohlikova, A.K. Gatin, et al., Russ. J. Phys. Chem. B 17, 845 (2023). https://doi.org/10.1134/S1990793123040164
  34. P. Pyykkö, M. Atsumi, Chem. Eur. J. 15, 186 (2009). https://doi.org/10.1002/chem.200800987
  35. E.A. Mason, T.H. Spurling, The virial equations of state. Oxford: Pergamon Press, (1969).
  36. M. Edalat, S. S. Lan, F. Pang, G. A. Mansoori, Int. J. Thermophys. 1, 177 (1980). https://doi.org/10.1007/BF00504519
  37. I. Nitzke, S. Pohl, M. Thol, R. Span, J. Vrabec, Mol. Phys. 120 (11), 1 (2022). https://doi.org/10.1080/00268976.2022.2078240

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Interaction potential for the Ar–Ar system: solid curve – real work, dashed – work [23], dotted – work [24].

Baixar (20KB)
3. 2. Distribution of radial electron densities of atoms.

Baixar (31KB)
4. Fig. 3. Interaction potentials of homoatomic pairs.

Baixar (44KB)
5. 4. Interaction potentials of heteroatomic pairs.

Baixar (46KB)
6. 5. Temperature dependence of the second virial coefficient for carbon.

Baixar (46KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024