Metastable methane dimers in collisions with inert gas atoms: study by the method of classical trajectories
- Authors: Ivanov S.V.1
-
Affiliations:
- Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences
- Issue: Vol 43, No 9 (2024)
- Pages: 3-18
- Section: Элементарные физико-химические процессы
- URL: https://cijournal.ru/0207-401X/article/view/680961
- DOI: https://doi.org/10.31857/S0207401X24090013
- ID: 680961
Cite item
Abstract
The formation of collision complexes, also called quasi–complexes (QC), metastable dimers or Feshbach resonances, has been studied for CH4 – He, Ne, Ar systems by the method of classical trajectories. The calculations used exact 3D classical Hamilton equations in the action–angle variables and non-empirical surfaces of the interaction potential energy. The selection of collision parameters was carried out by the Monte Carlo method. A statistical analysis of the QCs parameters is performed. It is shown that QCs can be both short-lived and long-lived and are characterized by a variety of interparticle separations. Among the total number of collisions, the fraction of QCs increases rapidly with a decrease of temperature. Formulas are given that reveal the contribution of QCs to the cross sections of the rotational RT- relaxation of CH4. It is shown that in methane mixtures considered RT- relaxation in QC- type collisions is much more effective than in ordinary inelastic collisions.
Full Text

About the authors
S. V. Ivanov
Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences
Author for correspondence.
Email: serg.ivanov.home@mail.ru
Russian Federation, Moscow, Troitsk
References
- Е.Е. Nikitin, Theory of Elementary Atomic and Molecular Processes in Gases (Oxford University Press, Oxford, 1974).
- R.D. Levine and R.B. Bernstein, Molecular Reaction Dynamics (Clarendon Press, New York, Oxford University Press Oxford, 1974).
- J. Heicklen, Atmospheric Chemistry (Academic Press, New York, 1976).
- J.N. Bradley, Flame and Combustion Chemistry (Chapman and Hall, London, 1969).
- W.D. Watson, Interstellar Chemistry, Acc. Chem. Res. 10, 221 (1977).
- J.O. Hirschfelder, Ch.F. Curtiss, R.B. Bird, Molecular Theory of Gases and Liquids (Wiley and Sons, New York, Chapman and Hall, London, 1954).
- A.A. Vigasin, in Weakly Interacting Molecular Pairs: Unconventional Absorbers of Radiation in the Atmosphere, Ed. by C. Camy-Peyret and A.A. Vigasin (Springer, Dordrecht, 2003), p. 23. https://doi.org/10.1007/978-94-010-0025-3
- A.A. Vigasin, Chem. Phys. Lett. 117, 85 (1985). https://doi.org/10.1016/0009-2614(85)80410-3
- A.A. Vigasin, in Molecular complexes in Earth’s, planetary, cometary, and interstellar atmospheres, Ed. by A.A. Vigasin and Z. Slanina (World Scientific, Singapore, 1998), p. 60.
- S.V. Ivanov, J. Quant. Spectrosc. Radiat. Transf. 177, 269 (2016). https://doi.org/10.1016/j.jqsrt.2016.01.034
- S.V. Ivanov, Optics and Spectroscopy. 130, 1508 (2022). https://doi. org/10.21883/EOS.2022.12.55235.4144-22
- D.J. Nesbitt, Chem. Rev. 112, 5062 (2012).
- D.C. Flatin, T.M. Goyette, M.M. Beaky, C.D. Ball, F.C. De Lucia, J. Chem. Phys. 110, 2087 (1999).
- G.D. Billing, Chem. Phys. 50, 165 (1980). https://doi.org/10.1016/0301-0104(80)87036-4
- M. Cacciatore, G. D. Billing // Chem. Phys. 58, 395 (1981). http://doi.org/10.1016/0301-0104(81)80074-2
- Kurnosov A., Cacciatore M., Napartovich A. Chem. Phys. Lett. 775, 138680 (2021). https://doi. org/10.1016/j.cplett.2021.138680
- S.V. Ivanov, in Weakly Interacting Molecular Pairs: Unconventional Absorbers of Radiation in the Atmosphere, Ed. by C. Camy-Peyret and A.A. Vigasin (Springer, Dordrecht, 2003), p. 49.
- S.V. Ivanov, Mol. Phys. 102, 1871 (2004). https://doi.org/10.1080/0026897042000274766
- W.H. Miller, in: Methods in computational physics. Advances in research and applications atomic and molecular scattering, V. 10, Atomic and molecular scattering, Ed. by B. Alder, S. Fernbach, M. Rotenberg (Academic Press, New York and London, 1971), p. 320.
- R.D. Levine, Acc. Chem. Res. 3, 273 (1970).
- R.E. Asfin, J.V. Buldyreva, T.N. Sinyakova, D.V. Oparin, N.N. Filippov // J. Chem. Phys. 2015. V. 142. P. 051101; https://doi.org/10.1063/1.4906874
- D.V. Oparin, N.N. Filippov, I.M. Grigoriev, A.P. Kouzov, J. Quant. Spectrosc. Radiat. Transfer. 196, 87 (2017). https://doi. org/10.1016/j.jqsrt.2017.04.002
- D.N. Chistikov, A.A. Finenko, S.E. Lokshtanov, S.V. Petrov, and A.A. Vigasin, J. Chem. Phys. 151, 194106 (2019).
- D.N. Chistikov, A.A. Finenko, Yu.N. Kalugina, S.E. Lokshtanov, S.V. Petrov, and A.A. Vigasin, J. Chem. Phys. 155, 064301 (2021). https://doi.org/10.1063/5.0060779
- Il.S. Golyak, D.R. Anfimov, I.B. Vintaykin, Ig.S. Golyak, M.S. Drozdov, A.N. Morozov, S.I. Svetlichnyi, S.E. Tabalin, L.N. Timashova, and I.L. Fufurin, Russ. J. Phys. Chem. B 17(2), 320 (2023).
- I.B. Vyntaykin, I.S. Golyak, P.A. Korolev, A.N. Morozov, S.E. Tabalin, and L.N. Timashova, Russ. J. Phys. Chem. B 15(3), 413 (2021).
- A.I. Rodionov, I.D. Rodionov, I.P. Rodionova, S.Ya. Umanskii, D.V. Shestakov, V.V. Egorov, and A.P. Kalinin, Russ. J. Phys. Chem. B 15(5), 904 (2021).
- V.V. Zelenov and E.V. Aparina, Russ. J. Phys. Chem. B 15(5), 919 (2021).
- Yu.A. Dyakov, S.O. Adamson, P.K. Wang, A.S. Vetchinkin, G.V. Golubkov, I.I. Morozov, S.Ya. Umanskii, Yu.A. Chaikina, and M.G. Golubkov, Russ. J. Phys. Chem. B 15(5), 782 (2021).
- I.K. Larin, Russ. J. Phys. Chem. B. 14(2), 336 (2020).
- E. Hirota, J. Mol. Spectr. 77, 213 (1979).
- L.M. Sverdlov, M.A. Kovner, E. P. Krainov, Vibrational Spectra of Polyatomic Molecules (Wiley and Sons, New York, 1974).
- J. Herranz, B.P. Stoicheff, J. Molec. Spectr. 10, 448 (1963).
- G. Herzberg, Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand, Princeton, 1991).
- H. Goldstein, Classical Mechanics (Addison-Wesley Publishing Company, Reading, Mass., 1950).
- U. Buck, K.H. Kohl, A. Kohlhase, M. Faubel, and V. Staemmler, Mol. Phys. 55, 1255 (1985).
- U. Buck, A. Kohlhase, D. Secrest, T. Phillips, G. Scoles, and F. Grein, Mol. Phys. 55, 1233 (1985).
- U. Buck, J. Schleusener, D.J. Malik, D. Secrest, J. Chem. Phys. 74, 1707 (1981).
- R.L. Armstrong, S.M. Blumenfeld, C.G. Gray, Can. J. Phys. 46, 1331 (1968).
- C.G. Gray, J. Chem. Phys. 50, 549 (1969). https://doi.org/10.1063/1.1670844
- C.W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood Cliffs, Prentice-Hall, N.J., 1971).
- S. Chapman, S. Green, J. Chem. Phys. 67, 2317 (1977). https://doi.org/10.1063/1.435067
- R.E. Langer, Phys. Rev. 51, 669 (1937). https://doi.org/10.1103/PhysRev.51.669
- L.N. Smith, D. Secrest, J. Chem. Phys. 74, 3882 (1981).
- W.-K. Liu, Q. Zhang, S. Lin, X. Yu, Y. Zhang, Chin. J. Phys. 32, 269 (1994).
- T.G. Heil, D. Secrest, J. Chem. Phys. 69, 219 (1981).
- G.A. Bird, Molecular Gas Dynamics (Clarendon Press, Oxford, 1976).
- J.-M. Hartmann, C. Boulet, D. Robert, Collisional Effects on Molecular Spectra: laboratory experiments and models, consequences for applications (Elsevier Science, Amsterdam, 2008). https://doi.org/10.1016/B978-0-444-52017-3.X0001-5
Supplementary files
