Metastable methane dimers in collisions with inert gas atoms: study by the method of classical trajectories

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The formation of collision complexes, also called quasi–complexes (QC), metastable dimers or Feshbach resonances, has been studied for CH4 – He, Ne, Ar systems by the method of classical trajectories. The calculations used exact 3D classical Hamilton equations in the action–angle variables and non-empirical surfaces of the interaction potential energy. The selection of collision parameters was carried out by the Monte Carlo method. A statistical analysis of the QCs parameters is performed. It is shown that QCs can be both short-lived and long-lived and are characterized by a variety of interparticle separations. Among the total number of collisions, the fraction of QCs increases rapidly with a decrease of temperature. Formulas are given that reveal the contribution of QCs to the cross sections of the rotational RT- relaxation of CH4. It is shown that in methane mixtures considered RT- relaxation in QC- type collisions is much more effective than in ordinary inelastic collisions.

Full Text

Restricted Access

About the authors

S. V. Ivanov

Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences

Author for correspondence.
Email: serg.ivanov.home@mail.ru
Russian Federation, Moscow, Troitsk

References

  1. Е.Е. Nikitin, Theory of Elementary Atomic and Molecular Processes in Gases (Oxford University Press, Oxford, 1974).
  2. R.D. Levine and R.B. Bernstein, Molecular Reaction Dynamics (Clarendon Press, New York, Oxford University Press Oxford, 1974).
  3. J. Heicklen, Atmospheric Chemistry (Academic Press, New York, 1976).
  4. J.N. Bradley, Flame and Combustion Chemistry (Chapman and Hall, London, 1969).
  5. W.D. Watson, Interstellar Chemistry, Acc. Chem. Res. 10, 221 (1977).
  6. J.O. Hirschfelder, Ch.F. Curtiss, R.B. Bird, Molecular Theory of Gases and Liquids (Wiley and Sons, New York, Chapman and Hall, London, 1954).
  7. A.A. Vigasin, in Weakly Interacting Molecular Pairs: Unconventional Absorbers of Radiation in the Atmosphere, Ed. by C. Camy-Peyret and A.A. Vigasin (Springer, Dordrecht, 2003), p. 23. https://doi.org/10.1007/978-94-010-0025-3
  8. A.A. Vigasin, Chem. Phys. Lett. 117, 85 (1985). https://doi.org/10.1016/0009-2614(85)80410-3
  9. A.A. Vigasin, in Molecular complexes in Earth’s, planetary, cometary, and interstellar atmospheres, Ed. by A.A. Vigasin and Z. Slanina (World Scientific, Singapore, 1998), p. 60.
  10. S.V. Ivanov, J. Quant. Spectrosc. Radiat. Transf. 177, 269 (2016). https://doi.org/10.1016/j.jqsrt.2016.01.034
  11. S.V. Ivanov, Optics and Spectroscopy. 130, 1508 (2022). https://doi. org/10.21883/EOS.2022.12.55235.4144-22
  12. D.J. Nesbitt, Chem. Rev. 112, 5062 (2012).
  13. D.C. Flatin, T.M. Goyette, M.M. Beaky, C.D. Ball, F.C. De Lucia, J. Chem. Phys. 110, 2087 (1999).
  14. G.D. Billing, Chem. Phys. 50, 165 (1980). https://doi.org/10.1016/0301-0104(80)87036-4
  15. M. Cacciatore, G. D. Billing // Chem. Phys. 58, 395 (1981). http://doi.org/10.1016/0301-0104(81)80074-2
  16. Kurnosov A., Cacciatore M., Napartovich A. Chem. Phys. Lett. 775, 138680 (2021). https://doi. org/10.1016/j.cplett.2021.138680
  17. S.V. Ivanov, in Weakly Interacting Molecular Pairs: Unconventional Absorbers of Radiation in the Atmosphere, Ed. by C. Camy-Peyret and A.A. Vigasin (Springer, Dordrecht, 2003), p. 49.
  18. S.V. Ivanov, Mol. Phys. 102, 1871 (2004). https://doi.org/10.1080/0026897042000274766
  19. W.H. Miller, in: Methods in computational physics. Advances in research and applications atomic and molecular scattering, V. 10, Atomic and molecular scattering, Ed. by B. Alder, S. Fernbach, M. Rotenberg (Academic Press, New York and London, 1971), p. 320.
  20. R.D. Levine, Acc. Chem. Res. 3, 273 (1970).
  21. R.E. Asfin, J.V. Buldyreva, T.N. Sinyakova, D.V. Oparin, N.N. Filippov // J. Chem. Phys. 2015. V. 142. P. 051101; https://doi.org/10.1063/1.4906874
  22. D.V. Oparin, N.N. Filippov, I.M. Grigoriev, A.P. Kouzov, J. Quant. Spectrosc. Radiat. Transfer. 196, 87 (2017). https://doi. org/10.1016/j.jqsrt.2017.04.002
  23. D.N. Chistikov, A.A. Finenko, S.E. Lokshtanov, S.V. Petrov, and A.A. Vigasin, J. Chem. Phys. 151, 194106 (2019).
  24. D.N. Chistikov, A.A. Finenko, Yu.N. Kalugina, S.E. Lokshtanov, S.V. Petrov, and A.A. Vigasin, J. Chem. Phys. 155, 064301 (2021). https://doi.org/10.1063/5.0060779
  25. Il.S. Golyak, D.R. Anfimov, I.B. Vintaykin, Ig.S. Golyak, M.S. Drozdov, A.N. Morozov, S.I. Svetlichnyi, S.E. Tabalin, L.N. Timashova, and I.L. Fufurin, Russ. J. Phys. Chem. B 17(2), 320 (2023).
  26. I.B. Vyntaykin, I.S. Golyak, P.A. Korolev, A.N. Morozov, S.E. Tabalin, and L.N. Timashova, Russ. J. Phys. Chem. B 15(3), 413 (2021).
  27. A.I. Rodionov, I.D. Rodionov, I.P. Rodionova, S.Ya. Umanskii, D.V. Shestakov, V.V. Egorov, and A.P. Kalinin, Russ. J. Phys. Chem. B 15(5), 904 (2021).
  28. V.V. Zelenov and E.V. Aparina, Russ. J. Phys. Chem. B 15(5), 919 (2021).
  29. Yu.A. Dyakov, S.O. Adamson, P.K. Wang, A.S. Vetchinkin, G.V. Golubkov, I.I. Morozov, S.Ya. Umanskii, Yu.A. Chaikina, and M.G. Golubkov, Russ. J. Phys. Chem. B 15(5), 782 (2021).
  30. I.K. Larin, Russ. J. Phys. Chem. B. 14(2), 336 (2020).
  31. E. Hirota, J. Mol. Spectr. 77, 213 (1979).
  32. L.M. Sverdlov, M.A. Kovner, E. P. Krainov, Vibrational Spectra of Polyatomic Molecules (Wiley and Sons, New York, 1974).
  33. J. Herranz, B.P. Stoicheff, J. Molec. Spectr. 10, 448 (1963).
  34. G. Herzberg, Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand, Princeton, 1991).
  35. H. Goldstein, Classical Mechanics (Addison-Wesley Publishing Company, Reading, Mass., 1950).
  36. U. Buck, K.H. Kohl, A. Kohlhase, M. Faubel, and V. Staemmler, Mol. Phys. 55, 1255 (1985).
  37. U. Buck, A. Kohlhase, D. Secrest, T. Phillips, G. Scoles, and F. Grein, Mol. Phys. 55, 1233 (1985).
  38. U. Buck, J. Schleusener, D.J. Malik, D. Secrest, J. Chem. Phys. 74, 1707 (1981).
  39. R.L. Armstrong, S.M. Blumenfeld, C.G. Gray, Can. J. Phys. 46, 1331 (1968).
  40. C.G. Gray, J. Chem. Phys. 50, 549 (1969). https://doi.org/10.1063/1.1670844
  41. C.W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood Cliffs, Prentice-Hall, N.J., 1971).
  42. S. Chapman, S. Green, J. Chem. Phys. 67, 2317 (1977). https://doi.org/10.1063/1.435067
  43. R.E. Langer, Phys. Rev. 51, 669 (1937). https://doi.org/10.1103/PhysRev.51.669
  44. L.N. Smith, D. Secrest, J. Chem. Phys. 74, 3882 (1981).
  45. W.-K. Liu, Q. Zhang, S. Lin, X. Yu, Y. Zhang, Chin. J. Phys. 32, 269 (1994).
  46. T.G. Heil, D. Secrest, J. Chem. Phys. 69, 219 (1981).
  47. G.A. Bird, Molecular Gas Dynamics (Clarendon Press, Oxford, 1976).
  48. J.-M. Hartmann, C. Boulet, D. Robert, Collisional Effects on Molecular Spectra: laboratory experiments and models, consequences for applications (Elsevier Science, Amsterdam, 2008). https://doi.org/10.1016/B978-0-444-52017-3.X0001-5

Supplementary files

Supplementary Files
Action
1. JATS XML
2. 1. Radial functions V0(R) , V3(R) , V4(R) for He–CH4[36], Ne–CH4[37], Ar–CH4 [38] systems.

Download (44KB)
3. Fig. 2. Comparison of calculated cross sections of the rotational transition J0 = 1 → J of the CH4 molecule in collisions with Ar and Ne atoms: a is the Ar–CH4 system, kinetic energy of the collision Ecoll = 256.8 cm–1:1 is the quantum CC method [44], 2 is the quantum CS method [44], 3 is the classical trajectory method [45], 4 is a real 3D calculation (the total number of trajectories is 402000); b is the Ne–CH4 system, the kinetic energy of the collision Ecoll = 716.2 cm–1. 1 is the quantum CS method [37], 2 is the classical trajectory method [45], 3 – real 3D calculation (the total number of trajectories is 1273750).

Download (52KB)
4. 3. Examples of three trajectories with the formation of quasi–complexes in collisions of the Ar-CH4 system. Calculation using the average thermal velocity v = (8kBT/pm)1/2 at T = 100K for J0 = 5. The dependences R(t) differ in the target parameters and orientations of the angular momentum of the CH4 molecule.

Download (34KB)
5. Fig. 4. Probability distribution functions of the lifetime tQC (a) and the number of turning points N (b) for the Ar–CH4 system. The role of the interaction potential at different temperatures: 1, 3 – a simple empirical potential [39, 40]; 2, 4 – a more accurate potential [38].

Download (111KB)
6. 5. Distributions of QC lifetimes (a) and turning points (b) in He–CH4, Ne–CH4, Ar–CH4 collisions. T = 100 K.

Download (93KB)
7. 6. Distributions of minimum QC sizes (closest approach distances Rmin) and maximum QC sizes (greatest particle distances Rmax) in He–CH4, Ne–CH4, Ar–CH4 collisions. T = 100 K.

Download (51KB)
8. 7. Distributions of the aiming parameter at which QCs are formed in He–CH4, Ne–CH4, and Ar–CH4 collisions. T = 100 K.

Download (89KB)
9. 8. Cross sections of QC formation: a is the cross section of QC formation at T = 296 K as a function of the rotational number J; b is the temperature dependence of the sQC(T) cross section (the results are averaged over all values of J under the Boltzmann distribution), bmax = 10 Å. Dark characters are all QC, light characters are only elastic QC.

Download (79KB)
10. 9. a – sections of rotational transitions J0 = 7 → J of the CH4 molecule in collisions with He, Ne, Ar at T = 296 K; b – sections of rotational transitions J0 → J of the CH4 molecule in collisions with Ar for different J0. T = 296 K. Solid symbols represent all collisions, light symbols represent only QC. The transitions J0 → J = J0 correspond to elastic collisions.

Download (185KB)

Copyright (c) 2024 Russian Academy of Sciences