Interaction of sodium atoms with molecular nitrogen in the upper atmosphere of the earth
- Authors: Umanskii S.Y.1, Adamson S.O.1, Vetchinkin A.S.1, Golubkov G.V.1,2, Deminskii M.A.3, Olkhov O.A.1, Stepanov I.G.1, Chaikina Y.A.1, Shushin A.I.1, Golubkov M.G.4
-
Affiliations:
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
- National Research Center “Kurchatov Institute”
- Kintech Lab
- Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук
- Issue: Vol 43, No 10 (2024)
- Pages: 100-114
- Section: Химическая физика атмосферных явлений
- URL: https://cijournal.ru/0207-401X/article/view/680956
- DOI: https://doi.org/10.31857/S0207401X24100094
- ID: 680956
Cite item
Abstract
In recent years numerous satellite data on the yellow glow of the sodium layer (located at an altitude of 85–95 km from the Earth’s surface) have become available. Studies of optical activity at sodium D-line frequencies are necessary for a better understanding of the plasma-chemical processes occurring in the mesosphere. It should be taken into account that these processes occur in a neutral environment, where the molecular nitrogen is general component. In this work the analytical numerical expressions for the elements of 3´3 matrix of interaction between Na(2Pj) and N2(X 1Sg+) and interaction potential between Na(2S1/2) and N2(X 1Sg+) were obtained at medium and large interpartical distances that determine radiation lines collisional broadening. The exchange, quadrupole–quadrupole, dispersion, and spin–orbit interactions were taken into account. Exchange interaction between the valence Na electron and N2(X 1Sg+) molecule was described by the local Hellman pseudopotential. The effect of the overlap between Na(2S1/2, 2Pj) and N2(X 1Sg+) electron densities was taken into account evaluating long-range quadrupole–quadrupole and dispersion interactions.
Full Text

About the authors
S. Y. Umanskii
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: golubkov@chph.ras.ru
Russian Federation, Moscow
S. O. Adamson
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: golubkov@chph.ras.ru
Russian Federation, Moscow
A. S. Vetchinkin
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: golubkov@chph.ras.ru
Russian Federation, Moscow
G. V. Golubkov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; National Research Center “Kurchatov Institute”
Email: golubkov@chph.ras.ru
Russian Federation, Moscow; Moscow
M. A. Deminskii
Kintech Lab
Email: golubkov@chph.ras.ru
Russian Federation, Moscow
O. A. Olkhov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: golubkov@chph.ras.ru
Russian Federation, Moscow
I. G. Stepanov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: golubkov@chph.ras.ru
Russian Federation, Moscow
Y. A. Chaikina
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: golubkov@chph.ras.ru
Russian Federation, Moscow
A. I. Shushin
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: golubkov@chph.ras.ru
Russian Federation, Moscow
M. G. Golubkov
Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук
Author for correspondence.
Email: golubkov@chph.ras.ru
Russian Federation, Москва
References
- M.G. Golubkov, A.V. Dmitriev, A.V. Suvorova, and G.V. Golubkov, Russ. J. Phys. Chem. B 16, 537 (2022). https://doi.org/10.1134/S199079312203006X
- V.L. Frolov, Y.Y. Kulikov, and A.V. Troitsky, Russ. J. Phys. Chem. B 16, 965 (2022). https://doi.org/10.1134/S1990793122050190
- G.V. Golubkov, S.O. Adamson, O.P. Borchevkina, et al., Russ. J. Phys. Chem. B 16, 508 (2022). https://doi.org/10.1134/S1990793122030058
- N.V. Bakhmetieva and I.N. Zhemyakov, Russ. J. Phys. Chem. B 16, 990 (2022). https://doi.org/10.1134/S1990793122050177
- B.R. Clemesha, Adv. Sp. Res. 10, 59 (1990). https://doi.org/10.1016/0273-1177(90)90010-W
- B.R. Clemesha, P.P. Batista, D. M. Simonich, and I.S. Batista, J. Geophys. Res. Atmos 109, D11306 (2004). https://doi.org/10.1029/2003JD004496
- D.R. Marsh, D. Janches, W. Feng, and J. M. C. Plane, J. Geophys. Res. Atmos. 118, 11442 (2013). https://doi.org/10.1002/jgrd.50870
- J.M.C. Plane, W. Feng, and E. C. M. Dawkins, Chem. Rev. 115, 4497 (2015). https://doi.org/10.1021/cr500501m
- M.P. Langowski, C. von Savigny, J. P. Burrows, et al., Atmos. Meas. Tech. 9, 295 (2016). https://doi.org/10.5194/amt-9-295-2016
- Y.B. Kumar, P.V. Prasanth, D.N. Rao, et al., Earth, Planets Sp. 59, 601 (2007); https://doi.org/10.1186/BF03352722
- C.S. Gardner and A.Z. Liu, J. Geophys. Res. Atmos. 115, D20302 (2010). https://doi.org/10.1029/2010JD014140
- N. Moussaoui, B.R. Clemesha, R. Holzlöhner, et al., Astron. Astrophys. 511, A31 (2010). https://doi.org/10.1051/0004-6361/200913281
- Y. Xun, G. Yang, J. Wang, et al., Atmosphere 11, 284 (2020); https://doi.org/10.3390/atmos11030284
- X. Cheng, G. Yang, T. Yuan, et al., Remote Sens. 12, 3678 (2020). https://doi.org/10.3390/rs12223678
- B.R. Clemesha, M.P.P. Martins Jorge, D. M. Simonich, and P.P. Batista, Adv. Sp. Res. 19, 681 (1997). https://doi.org/10.1016/S0273-1177(97)00163-4
- N. Allard and J. Kielkopf, Rev. Mod. Phys. 54, 1103 (1982). https://doi.org/10.1103/RevModPhys.54.1103
- A.V. Demura, S.Y. Umanskii, A.V. Scherbinin, and A.V. Zaitsevskii, J. Phys. Conf. Ser. 397, 012033 (2012). https://doi.org/10.1088/1742-6596/397/1/012033
- S.Y. Umanskii, S. O. Adamson, A. S. Vetchinkin, et al., Russ. J. Phys. Chem. B 17, 346 (2023). https://doi.org/10.1134/S199079312302032X
- C. Bottcher, Chem. Phys. Lett. 35, 367 (1975). https://doi.org/10.1016/0009-2614(75)85621-1
- P. Habitz, Chem. Phys. 54, 131 (1980). https://doi.org/10.1016/0301-0104(80)80043-7
- P. Archirel and P. Habitz, Chem. Phys. 78, 213 (1983). https://doi.org/10.1016/0301-0104(83)85108-8
- D. Poppe, D. Papierowska-Kaminski, and V. Bonačić-Koutecký, J. Chem. Phys. 86, 822 (1987). https://doi.org/10.1063/1.452761
- R. Goldstein, J. Grosser, O. Hoffmann, et al., J. Chem. Phys. 114, 2144 (2001). https://doi.org/10.1063/1.1337060
- M. Jungen, Helv. Chim. Acta 84, 1459 (2001). https://doi.org/10.1002/1522-2675(20010613)84: 6<1459::AID-HLCA1459>3.0.CO;2-J
- C. Figl, R. Goldstein, J. Grosser, O. Hoffmann, and F. Rebentrost, J. Chem. Phys. 121, 11068 (2004). https://doi.org/10.1063/1.1818121
- F. Rebentrost, C. Figl, R. Goldstein, et al., J. Chem. Phys. 128, 1 (2008). https://doi.org/10.1063/1.2928716
- E. Nikitin and S. Y. Umanskii, Theory of slow atomic collisions (Springer, Heidelberg, 1984). https://doi.org/10.1007/978-3-642-82045-8
- E. E. Nikitin and S. Y. Umanskii, Theor. Chim. Acta. 28, 121 (1973). https://doi.org/10.1007/BF00528656
- A. I. Reznikov and S. Y. Umanskii, Russ. J. Phys. Chem. 76, S13 (2002).
- A. I. Reznikov, S. Y. Umanskii, and Y. A. Chaikina, Russ. J. Phys. Chem. B 1, 435 (2007). https://doi.org/10.1134/S1990793107050016
- V. M. Galitsky, E. E. Nikitin, and B. M. Smirnov, Theory of atomic particles collisions (Nauka, Moscow, 1981).
- H. Hellmann, J. Chem. Phys. 3, 61 (1935). https://doi.org/10.1063/1.1749559
- H. Hellmann, Quantum chemistry (State Publication of technical and Theoretical literature, Moscow, Leningrad, 1937).
- P. Gombash, Many-particle problem in quantum mechanics (Inostrannaya Literatura, Moscow, 1952).
- W.E. Baylis, J. Chem. Phys. 51, 2665 (1969). https://doi.org/10.1063/1.1672393
- J. Pascale and J. Vandeplanque, J. Chem. Phys. 60, 2278 (1974). https://doi.org/10.1063/1.1681360
- K.J. Wahlstrand , R.W. Numrich, J.S. Dahler, and S.E. Nielsen, J. Phys. B At. Mol. Phys. 10, 1687 (1977). https://doi.org/10.1088/0022-3700/10/9/019
- E. Czuchaj and J. Sienkiewicz, Z. Naturforsch. A 34, 694 (1979). https://doi.org/10.1515/zna-1979-0604
- R. Düren and G. Moritz, J. Chem. Phys. 73, 5155 (1980). https://doi.org/10.1063/1.439994
- S.V. Khristenko, A.I. Maslov, and V. P. Shevelko, Molecules and Their Spectroscopic Properties (Springer Berlin Heidelberg, Berlin, Heidelberg, 1998). https://doi.org/10.1007/978-3-642-71946-2
- D. Rapp and C.M. Chang, J. Chem. Phys. 57, 4283 (1972). https://doi.org/10.1063/1.1678060
- D. Rapp and C.M. Chang, J. Chem. Phys. 58, 2657 (1973). https://doi.org/10.1063/1.1679551
- P.G. Burke and N. Chandra, J. Phys. B At. Mol. Phys. 5, 1696 (1972). https://doi.org/10.1088/0022-3700/5/9/013
- L.R. Kahn, P. Baybutt, and D.G. Truhlar, J. Chem. Phys. 65, 3826 (1976). https://doi.org/10.1063/1.432900
- E. Czuchaj, J. Sienkiewicz, and W. Miklaszewski, Chem. Phys. 116, 69 (1987). https://doi.org/10.1016/0301-0104(87)80069-1
- J.R. Trail and R.J. Needs, J. Chem. Phys. 146, 204107 (2017). https://doi.org/10.1063/1.4984046
- S.O. Adamson, D.D. Kharlampidi, G. V. Golubkov, et al., Russ. J. Phys. Chem. B 14, 235 (2020). https://doi.org/10.1134/S1990793120020165
- S.O. Adamson, D.D. Kharlampidi, G.V. Golubkov, et al., Russ. J. Phys. Chem. B 14, 742 (2020). https://doi.org/10.1134/S1990793120050164
- L.D. Landau, E.M. Lifshitz, Quantum mechanics (Pergamon Press, Oxford, New York, Frankfurt, 1977).
- D.A. Varshalovich, A.N. Moskalev, and V.K. Khersonskii, Quantum theory of angular momentum (Nauka, Leningrad, 1975).
- G. Maroulis, J. Chem. Phys. 118, 2673 (2003). https://doi.org/10.1063/1.1535443
- J. Kobus, Phys. Rev. A 91, 022501 (2015). https://doi.org/10.1103/PhysRevA.91.022501
- B. J. Ransil, Rev. Mod. Phys. 32, 245 (1960). https://doi.org/10.1103/RevModPhys.32.245
- I. I. Sobelman, Introduction to the theory of atomic spectra (Pergamon press, Oxford, 1972). https://doi.org/10.1016/C2013-0-02394-8
- B.C. Carlson and G.S. Rushbrooke, Math. Proc. Camb. Philos. Soc. 46, 626 (1950). https://doi.org/10.1017/S0305004100026190
- C.G. Gray, Can. J. Phys. 46, 135 (1968). https://doi.org/10.1139/p68-020
- K.T. Tang and J.P. Toennies, J. Chem. Phys. 68, 5501 (1978). https://doi.org/10.1063/1.435678
- K.T. Tang and J.P. Toennies, J. Chem. Phys. 80, 3726 (1984). https://doi.org/10.1063/1.447150
- G.D. Mahan, J. Chem. Phys. 48, 950 (1968). https://doi.org/10.1063/1.1668749
- G.D. Mahan, J. Chem. Phys. 50, 2755 (1969). https://doi.org/10.1063/1.1671441
- B. Amaee and C. Bottcher, J. Phys. B At. Mol. Phys. 11, 1249 (1978). https://doi.org/10.1088/0022-3700/11/7/022
- A.I. Reznikov and S.Y. Umanskii, Khim. Fiz. 23, 5 (2004).
- D.E. Weeks, T.A. Niday, and S.H. Yang, J. Chem. Phys. 125, 1 (2006). https://doi.org/10.1063/1.2222369
- F. Rebentrost and W.A. Lester, J. Chem. Phys. 64, 3879 (1976). https://doi.org/10.1063/1.432705
- M.H. Alexander and M. Yang, J. Chem. Phys. 103, 7956 (1995). https://doi.org/10.1063/1.470213
Supplementary files
