On the statistical theory of the shape of multiple quantum nmr spectra in solids
- Autores: Zobov V.E.1, Lundin A.A.2
-
Afiliações:
- Kirensky Institute of Physics, Federal Research Center KSC SB RAS
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
- Edição: Volume 43, Nº 10 (2024)
- Páginas: 3-20
- Seção: СТРОЕНИЕ ХИМИЧЕСКИХ СОЕДИНЕНИЙ, КВАНТОВАЯ ХИМИЯ, СПЕКТРОСКОПИЯ
- URL: https://cijournal.ru/0207-401X/article/view/680948
- DOI: https://doi.org/10.31857/S0207401X24100016
- ID: 680948
Citar
Resumo
The statistical model developed in this work allows us to calculate the shape of the multiple quantum (MQ) NMR spectra (the dependence of the amplitudes of the corresponding multiple quantum coherences on their orders) by decomposing the desired time-correlation functions (TCF) over the infinite set of orthogonal operators and by using some well-known facts from the physics of traditional model systems. The resulting expression contains series with terms depending on the gradually growing up with the time number of spins in clusters of correlated spins. The influence of the possible degradation of these clusters on the shape of the spectra is taken into account. Analytical and numerical calculations were performed for various parameter values included in the final expressions. The developed theory adequately describes the results of numerical calculations of the MQ spectra performed by us and experiments: the transformation of the Gaussian profile into an exponential one, the asymptotics (wings) of the spectrum depending on the coherence order M, the dependence of the relaxation rate of the MQ spectrum on M, as well as the narrowing and stabilization of the MQ spectrum under the influence of perturbation.
Texto integral

Sobre autores
V. Zobov
Kirensky Institute of Physics, Federal Research Center KSC SB RAS
Autor responsável pela correspondência
Email: rsa@iph.krasn.ru
Rússia, Krasnoyarsk
A. Lundin
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: ya-andylun2012@yandex.ru
Rússia, Moscow
Bibliografia
- N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys. Rev. 73, 679 (1948). https://doi.org/10.1103/PhysRev.73.679
- V.O. Zavel’skii and A. A. Lundin, Russ. J. Phys. Chem. B 10, 379 (2016). https://doi.org/10.1134/S1990793116030118
- A.A. Lundin and V. E. Zobov, J. Exp. Theor. Phys., 127, 305 (2018) https://doi.org/10.1134/S1063776118080216
- A.A. Lundin, V.E. Zobov, Russian Journal of Physical Chemistry B, 15, 839 (2021). https://doi.org/10.1134/S1990793121050079
- A. Abragam, The Principles of Nuclear Magnetism (Clarendon, Oxford, 1961), Chs. 4,6,10.
- R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of NMR in One and TwoDimensions (Clarendon, Oxford, 1987).
- B. Blumich, Essential NMR for Scientists and Engineers (Springer, Berlin, Heidelberg, 2005).
- P.-K. Wang, J.-P. Ansermet, S. L. Rudaz, Z. Wang, S. Shore, Ch. P. Slichter, and J.M. Sinfelt, Science 234, 35 (1986). https://doi.org/10.1126/science.234.4772.35
- J. Baum and A. Pines, J. Am. Chem. Soc. 108, 7447 (1986).
- S.I. Doronin, A.V. Fedorova, E.B. Fel’dman, and A.I. Zenchuk, J. Chem. Phys. 131,104109 (2009). https://doi.org/10.1063/1.3231692
- J. Baum, M. Munovitz, A.N. Garroway, A. Pines, J. Chem. Phys. 83, 2015 (1985). https://doi.org/10.1063/1.449344
- Advances in Chemical Physics / Eds. I. Prigogine, S.A. Rice (Wiley&Sons, 1987). Vol. 66. P. 1. https://doi.org/10.1002/97804701429.29.ch1
- R. Balesku, Equilibrium and Nonequilibrium Statistical Mechanics (Wiley, New York, 1978), Vol. 2.
- J. Preskill, Lecture Notes for Physics, Vol. 229: Quantum Information and Computation (California Inst. Technol., (1998)).
- V.E.Zobov and A.A. Lundin, J. Exp. Theor. Phys.,131, 273 (2020). https://doi.org/10.1134/S1063776120060096
- A.I. Larkin, Y.N. Ovchinnikov, JETP, 28, 1200, (1969).
- F.D. Domínguez, M.C. Rodríguez, R. Kaiser, D. Suter, and G.A. Álvarez, Phys. Rev.A, 104, 012402, (2021). https://doi.org/10.1103/PhysRevA.104.012402
- S.H. Shenker, D. Stanford, J. High Energy Phys., 3, 067 (2014). https://doi.org/10.1007/JHEP03(2014)067
- D.E. Parker, X. Cao, A. Avdoshkin, T. Scaffidi, E. Altman, Phys.Rev.X, 9, 041017 (2019). https://doi.org/10.1103/PhysRevX.9.041017
- Q. Wang, F. Perez-Bernal, Phys.Rev.A, 100, 062113 (2019). https://doi.org/10.1103/PhysRevA.100.062113
- Y. Gu, A. Kitaev, P. Zhang, J. High Energy Phys., 2022, 133 (2022). https://doi.org/10.1007/JHEP03(2022)133
- C. Gross and I. Bloch, Science 357, 995 (2017). https://doi.org/10.1126/science.aal3837
- R. Blatt and C.F. Roos, Nature Phys. 8, 277 (2012). https://doi.org/10.1038/nphys2252
- A.K. Khitrin, Chem. Phys. Lett. 274, 217 (1997) https://doi.org/10.1016/S0009-2614(97)00661-1
- V.E. Zobov and A.A. Lundin, J. Exp. Theor. Phys., 103, 904 (2006). https://doi.org/10.1134/S1063776106120089
- V.E. Zobov and A.A. Lundin, JETP Lett. 105, 51 (2017) https://doi.org/0.7868/S0370274X17080082
- M. Gattner, Ph. Hauke, and A.M. Rey, Phys. Rev. Lett. 120, 040402 (2018). https://doi.org/10.1103/PhysRevLett.120.040402
- S.I. Doronin, E.B. Fel’dman, and I.D. Lazarev, Phys. Rev. А 100, 022330 (2019). https://doi.org/ doi: 10.1103/Phys.Rev.A.100.022330
- S.I.Doronin, E.B. Fel’dman, and I. D. Lazarev, Phys.Lett.A 406, 127458 (2021). https://doi.org/10.1016/j.physleta.2021.127458
- K. X. Wei, P. Peng, O. Shtanko, I. Marvian, S. Lloyd, C. Ramanathan, and P. Cappellaro, Phys. Rev. Lett. 123, 090605 (2019). https://doi.org/10.1103/PhysRevLett.123.090605
- P.W. Anderson, P.R. Weiss, Rev. Mod. Phys., 25, 269 (1953). https://doi.org/10.1103/RevModPhys.25.269
- J.R. Klauder, P.W. Anderson, Phys.Rev.,125, 912 (1962). https://doi.org/10.1103/PhysRev.125.912
- S. Lacelle, S. Hwang and B. Gerstein, J. Chem. Phys., 99, 8407 (1993). https://doi.org/10.1063/1.465616
- R.H. Schneder, H. Schmiedel, Phys. Lett. A, 30, 298 (1969). https://doi.org/10.1016/0375-9601(69)91005-6
- W.K. Rhim, A. Pines, J.S. Waugh, Phys. Rev. B, 3, 684 (1971). https://doi.org/10.1103/PhysRevB.3.684
- A.A. Lundin and V.E. Zobov, J. Exp. Theor. Phys. 120, 762 (2015). https://doi.org/10.1134/S1063776115040093
- F. Lado, J.D. Memory, G.W. Parker, Phys.Rev.B, 4, 1406 (1971). https://doi.org/10.1103/PhysRevB.4.1406
- M.H. Lee, Phys.Rev.Lett., 52, 1579 (1984). https://doi.org/10.1103/PhysRevLett.52.1579
- M.H. Lee, J. Hong, Phys.Rev.B, 32, 7734 (1985). https://doi.org/10.1103/PhysRevB.32.7734
- J.M. Liu, G. Müller, Phys.Rev.A, 42, 5854 (1990). https://doi.org/10.1103/PhysRevA.42.5854
- M.H. Lee, I.M. Kim, W.P. Cummings, R. Dekeyser, J. Phys.: Condens. Matter, 7, 3187 (1995). https://doi.org/10.1088/0953-8984/7/16/013
- V.L. Bodneva, A.A. Lundin, and A.V. Milyutin, Theor. Math. Phys. 106 (3), 370, (1996). https://doi.org/10.1007/BF02071482
- M. Böhm, H. Leschke, M. Henneke, et al., Phys. Rev. B, 49, 5854 (1994).
- V.A. Il’in and G.D. Kim, Linear Algebra and Analytic Geometry (Mosk. Gos. Univ., Moscow, (2008)), Chap. 13 [in Russian].
- A.A. Lundin, V.E. Zobov, Appl. Magn. Res. 47, 701 (2016). https://doi.org/10.1007/s00723-016-0770-z
- V.E. Zobov, A.A. Lundin, Appl. Magn. Res. 52, 879 (2021). https://doi.org/10.1007/s00723-021-01342-1
- H.G. Krojanski, D. Suter, Phys. Rev. Lett., 97, 150503 (2006). https://doi.org/10.1103/PhysRevLett.97.150503
- H.G. Krojanski, D. Suter, Phys.Rev.A.,74, 062319 (2006). https://doi.org/10.1103/PhysRevA.74.062319
- G. Cho, P. Cappelaro, D. G. Cory, and C. Ramanathan, Phys. Rev. B 74, 224434, (2006). https://doi.org/10.1103/PhysRevB.74.224434
- V.E. Zobov, A.A. Lundin, Russ., J. Phys. Chem., B 2, 676 (2008).
- A.P., Prudnikov, U.A. Briachkov, O.I.Marichev, Integraly i ryadi (Moskva, Nauka (1981)), Section 2.3.16(2) [in Russian].
- V.E. Zobov, A.A. Lundin, J. Exp. Theor. Phys.,135, 752 (2022). https://doi.org/10.1134/S1063776122110139
- G.A. Alvarez, R. Kaiser, D. Suter, Ann. Phys. (Berlin) 525, 833 (2013). https://doi.org/10.1002/andp.201300096
- H.G. Krojanski and D. Suter, Phys. Rev. Lett. 93, 090501 (2004). https://doi.org/10.1103/PhysRevLett.93.090501
- V.E. Zobov and A.A. Lundin, J. Exp. Theor. Phys., 112, 451 (2011). https://doi.org/10.1134/S1063776111020129
- G.A. Álvarez, D. Suter,Phys.Rev.Lett., 104, 230403 (2010). https://doi.org/10.1103/PhysRevLett.104.230403
- V.E. Zobov and A.A. Lundin, J. Exp. Theor. Phys. 113, 1006 (2011). https://doi.org/10.1134/S1063776111140111
- G.A. Álvarez, D. Suter, R. Kaiser, Science, 349, 846 (2015). https://doi.org/10.1126/science.1261160
- G.A. Alvarez, D. Suter, Phys.Rev.A 84, 012320 (2011) https://doi.org/10.1103/PhysRevA.84.012320
- V.E. Zobov and A.A. Lundin, JETP Letters, 117, 932 (2023) https://doi.org/10.1134/S0021364023601525
- M.V. Phedoryuk, Asimptotika: Integraly i ryadi. (Moskva, Nauka (1987)) Chapter II, §1 [in Russian].
- S.Y. Umanskii et al., Russ. J. Phys. Chem. B, 17, 346 (2023) https://doi.org/10.1134/S199079312302032X
- V.E. Kirillov, V.E. Yurkov, M.S. Korobov et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 6. P.
- E.V. Morozov, A.V. Ilyichov, V.M. Buznik // Russ. J. Phys. Chem. B. 2023. V. 17. № 6. P. 1361.
Arquivos suplementares
