Peculiarities of the effect of manganese and cadmium ions on the properties of liposomes from lecithin
- Authors: Beletskaya P.D.1, Dubovik A.S.1,2, Shvydkiy V.O.1, Shishkina L.N.1
-
Affiliations:
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences
- Nesmeyanov Institute of Organoelement compounds, Russian Academy of Sciences
- Issue: Vol 44, No 3 (2025)
- Pages: 87-96
- Section: Химическая физика экологических процессов
- URL: https://cijournal.ru/0207-401X/article/view/679472
- DOI: https://doi.org/10.31857/S0207401X25030094
- ID: 679472
Cite item
Abstract
The features of the influence of divalent cadmium and manganese ions on the ability of lecithin to form aggregates in water medium, its ζ-potential, and the state of the lipid peroxidation processes have been studied. The methods used were TLC, dynamic light scattering, and processing of UV spectra using the Gauss method. It was revealed that cadmium ions accelerate the processes of lipid oxidation in liposomes, and manganese ions inhibit them. At the same time, cadmium ions, as opposed to manganese ions, require more period to interact with the membrane structure of liposomes. The data obtained and the analysis of the literature allow us to conclude that the cadmium and manganese ions present in the solution influence the spontaneous aggregation of lecithin and participate at different stages of the oxidation process in accordance with their biological activity when entering the body.
Full Text

About the authors
P. D. Beletskaya
Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences
Email: shishkina@sky.chph.ras.ru
Russian Federation, Moscow
A. S. Dubovik
Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences; Nesmeyanov Institute of Organoelement compounds, Russian Academy of Sciences
Email: shishkina@sky.chph.ras.ru
Russian Federation, Moscow; Moscow
V. O. Shvydkiy
Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences
Email: shishkina@sky.chph.ras.ru
Russian Federation, Moscow
L. N. Shishkina
Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences
Author for correspondence.
Email: shishkina@sky.chph.ras.ru
Russian Federation, Moscow
References
- E.V. Shtamm, V.O. Shvydkii, I.S. Baikova. Russ. J. Phys. Chem. B 9, 421 (2015). https://doi.org/10.1134/S1990793115030197
- Q. Wang, Z. Yang. Environ. Pollution. 218, 358 (2016). https://doi.org/ 10.1016/j.envpol.2016.07.011
- Anil K. Dwivedi. Intern. Reas. J. Natur. Appl. Sci. 4, 118 (2017).
- L. Schweitzer. J. Noblet, Green Chem. 1, 261 (2018). https://doi.org/10.1016/B978-0-12-809270-5.00011-X
- Y.I. Skurlatov, E.V. Shtamm, A.V. Roshchin. Russ. J. Phys. Chem. B 14, 130 (2020). https://doi.org/ 10.1134/S1990793120010303
- V.F. Gromov, M.I. Ikim, G.N. Gerasimov, L.I. Trakhtenberg. Russ. J. Phys. Chem. B 16, 138 (2022). https://doi.org/10.1134/S1990793122010055
- I.V. Kumpanenko, K.A. Shiyanova, E.O. Panin, O.V. Shapovalova. Russ. J. Phys. Chem. B 16, 1164 (2022). https://doi.org/10.1134/s1990793122060185
- D. Kar, P. Sur, S.K. Mandai et al. Intern. J. of Environ. Sci. Techol. 5, 119 (2008).
- I.F. Medvedev, S.S. Derevaygin. Heavy metals in ecosystems (Racurs, Saratov, 2017).
- C. Zamora-Ledezma, D. Negrete-Bolagay, F. Figueroa et al. Environ. Techol. Innov. 22, 26 (2021). https://doi.org/10.1016/j.eti.2021.101504
- V.F. Gromov, M.I. Ikim, G.N. Gerasimov, L.I. Trakhtenberg. Russ. J. Phys. Chem. B. 15, 140 (2021). https://doi.org/10.1134/S1990793121010036
- I.V. Kumpanenko, N.A. Ivanova, O.V. Shapovalova et al. Russ. J. Phys. Chem. B. 16, 917 (2022). https://doi.org/10.1134/s1990793122050050
- H.B. Bradl. Interface Sci. Techol. 6, 1 (2005). https://doi.org/10.1016/s1573-4285(05)80020-1
- L. Sörme, R. Lagerkvist. Sci. Total Environ. 298, 131 (2002). https://doi.org/10.1016/s0048-9697(02)00197-3
- P. Chen, J. Bornhorst, M. Aschner. Front. Biosci. 23, 1655 (2018). https://doi.org/10.2741/4665
- B.S. Musayev, A.I. Rabadanova, G.R. Muradova, A.Z. Marhiyeva. Toxic. Review. 113, 27 (2012).
- S.L. O’Neal, W. Zheng. Curr. Environ. Health Rpt. 2, 315 (2015). https://doi.org/10.1007/s40572-015-0056-x
- D.L. Mazunina. Human Ecology. 3, 25 (2015).
- N. Johri, G. Jacquillet, R. Unwin. Biometals. 23, 783 (2010). https://doi.org/10.1007/s10534-010-9328-y
- S.G. Skugoreva, T.Ya. Ashihmina, A.I. Fokina, E.I. Lyalina. Theor. Appl. Ecology. 1, 4 (2016). https://doi.org/10.25750/1995-4301-2016-1-014-019
- C. Vigo-Pelfrey. Membrane Lipid Oxidation (CRC Press, Boston, 1991)
- L.N. Shishkina, M.A. Klimovich, M.V. Kozlov. Pharmaceutical and Medical Biotechnology: New Perspective. (Nova Science Publishers, N.Y., 2013).
- V.O. Shvydkii, E.V. Shtamm, Y.I. Skurlatov et al. Russ. J. Phys. Chem. B 11, 643 (2017). https://doi.org/10.1134/S1990793117040248
- L.N. Shishkina, M.V. Kozlov, A.Y. Povkh, V.O. Shvydkiy. Russ. J. Phys. Chem. B 15, 861 (2021). https://doi.org/10.1134/S1990793121050080
- Biological Membranes: A Practical Approach, Ed. by J.B.C. Findlay. W.H. Evans (Oxford Univ. Press, Oxford, 1987; Mir, Moscow, 1990).
- L.N. Shishkina, E.V. Kushnireva, M.A. Smotryaeva. Radiation biology. Radioecology. 44, 289 (2004). https://doi.org/10.31857/S0869803123020108
- K.M. Marakulina, R.V. Kramor, Yu.K. Lukanina et al. Russ. J. Phys. Chem. A 90, 289 (2016). https://doi.org/10.1134/S0036024416022187
- L.N. Shishkina, M.V. Kozlov, T.V. Konstantinova et al. Russ. J. Phys. Chem. B 17, 141 (2023). https://doi.org/10.1134/s1990793123010104
- L.N. Shishkina, P.D. Beletskaya, A.S. Dubovik et al. Russ. J. Biol. Phys. Chem. 8 (1), 111 (2023). https://doi.org/10.29039/rusjbbpc.2023.0597
- M. Valko, D. Leibfritz, J. Moncol et al. Intern. J. Biochem. Cell Biol. 39, 44 (2007). https://doi.org/10.1016/j.biocel.2006.07.001
- V. Shvydkyi, S. Dolgov, A. Dubovik et al. J. Chem. Moldova. 17, 35 (2022). https://doi.org/10.19261/cjm.2022.973
Supplementary files
