Kinetics of the reaction of hydrogen evolution on steel in inhibited phosphoric acid solutions
- Authors: Avdeev Y.G.1, Nenasheva T.A.1, Luchkin A.Y.1, Panova A.V.1, Marshakov A.I.1, Kuznetsov Y.I.1
-
Affiliations:
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
- Issue: Vol 44, No 3 (2025)
- Pages: 15-27
- Section: Kinetics and mechanism of chemical reactions, catalysis
- URL: https://cijournal.ru/0207-401X/article/view/679465
- DOI: https://doi.org/10.31857/S0207401X25030023
- ID: 679465
Cite item
Abstract
The kinetics was studied and the constants of the main stages of hydrogen separation and incorporation into steel in a solution of phosphoric acid containing a mixture of 1,2,4 triazole derivative IFKhAN-92 and KNCS were determined. The addition of IFKhAN-92 + KNCS mixture inhibits the reaction of cathodic reduction of hydrogen and its penetration into steel in H3PO4 solution. The inhibitory effect of this mixture is due to a decrease in the ratio of the hydrogen concentration in the metal phase to the degree of hydrogen filling of the surface. The decrease in the hydrogen concentration in the metal volume by the IFKhAN-92 + KNCS mixture determines the preservation of the plastic properties of steel during corrosion in H3PO4 solutions. The high efficiency of the IFKhAN-92 + KNCS composition, as inhibitors of cathodic reduction of hydrogen and its absorption, is the result of chemisorption of the organic component of the mixture on the surface of steel and the formation of a polymolecular protective layer.
Full Text

About the authors
Ya. G. Avdeev
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Author for correspondence.
Email: avdeevavdeev@mail.ru
Russian Federation, Moscow
T. A. Nenasheva
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Email: avdeevavdeev@mail.ru
Russian Federation, Moscow
A. Yu. Luchkin
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Email: avdeevavdeev@mail.ru
Russian Federation, Moscow
A. V. Panova
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Email: avdeevavdeev@mail.ru
Russian Federation, Moscow
A. I. Marshakov
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Email: avdeevavdeev@mail.ru
Russian Federation, Moscow
Yu. I. Kuznetsov
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Email: avdeevavdeev@mail.ru
Russian Federation, Moscow
References
- B.N. Popov, J.-W. Lee, M.B. Djukic. Handbook of Environmental Degradation of Materials (Third Edition). Elsevier Inc. 133 (2018). https://doi.org/10.1016/B978-0-323-52472-8.00007-1
- R.A. Cottis. Shreir’s Corrosion, Elsevier. 902 (2010). https://doi.org/10.1016/B978-044452787-5.00200-6
- E. Ohaeri, U. Eduok, J. Szpunar. Inter. J. Hydrogen Energy. 43(31), 14584 (2018). https://doi.org/10.1016/j.ijhydene.2018.06.064
- J. Aromaa, A. Pehkonen, S. Schmachtel et al. Adv. Mater. Sci. Eng. 2018, Article ID 3676598 (2018). https://doi.org/10.1155/2018/3676598
- E.I. Rudenko, N.V. Dohlikova, A.K. Gatin et al. Russ. J. Phys. Chem. B, 17(4), 845 (2023). https://doi.org/10.1134/S1990793123040164
- N.V. Dokhlikova, S.A. Ozerin, S.V. Doronin et al. Russ. J. Phys. Chem. B, 16(3), 461 (2022). https://doi.org/10.1134/S1990793122030137
- N.V. Dokhlikova, A.K. Gatin, S.Yu. Sarvadiy et al. Russ. J. Phys. Chem. B, 15(4), 732 (2021). https://doi.org/10.1134/S1990793121040023
- N.V. Dokhlikova, A.K. Gatin, S.Yu. Sarvadiy et al. Russ. J. Phys. Chem. B, 16(2), 361 (2022). https://doi.org/10.1134/S1990793122020166
- N.V. Dokhlikova, A.K. Gatin, S.Yu. Sarvadii et al. Russ. J. Phys. Chem. B, 14(5), 733 (2020). https://doi.org/10.1134/S1990793120050036
- V.I. Vigdorovich, L.E. Tsygankova, D.V. Balybin et al. J. Electroanalytical Chem. 689, 117 (2013). https://doi.org/10.1016/j.jelechem.2012.10.021
- V.I. Vigdorovich, L.E. Tsygankova, D.V. Balybin. J. Electroanalytical Chem. 653(1-2), 1 (2011). https://doi.org/10.1016/j.jelechem.2011.01.026
- M.G. Silva, R.G. de Araujo, R.L. Silvério. J. Mater. Res. Technol. 16, 1324 (2022). https://doi.org/10.1016/j.jmrt.2021.12.068
- S. Hari Kumar, S. Karthikeyan, P.A. Vivekanand et al. Mater. Today: Proc. 36(4), 898 (2021). https://doi.org/10.1016/j.matpr.2020.07.027
- S. Hari Kumar, P.A. Vivekanand, V. Shobana et al. Res. J. Chem. Sci. 2(10), 87 (2012).
- S. Karthikeyan, P.A. Jeeva, K. Raja et al. JCSE 18, 8 (2015).
- V.I. Vigdorovich, L.E. Tsygankova, D.V. Balybon. Prot. Met. Phys. Chem. Surf. 47, 684 (2011). https://doi.org/10.1134/S2070205111050236
- P.A. Jeeva, G.S. Mali, R. Dinakaran et al. Int. J. Corros. Scale Inhib. 2019. V. 8. № 1. P. 1. https://doi.org/10.17675/2305-6894-2019-8-1-1
- M. Shyamala, P.K. Kasthuri. Int. J. Corros. 2012, Article ID 852827 (2012). https://doi.org/10.1155/2012/852827
- Ya.G. Avdeev, T.A. Nenasheva, A.Yu. Luchkin et al. Russ. J. Phys. Chem. B, 18, 111 (2024). https://doi.org/10.1134/S1990793124010044
- Ya.G. Avdeev, Yu.I. Kuznetsov. Int. J. Corros. Scale Inhib. 12(2), 366 (2023). https://doi.org/10.17675/2305-6894-2023-12-2-1
- A.V. Kuzin, I.G. Gorichev, V.A. Shelontsev et al. Moscow Univ. Chem. Bull., 76, 398 (2021). https://doi.org/10.3103/S0027131421060055
- A.V. Kuzin, I.G. Gorichev, Y.A. Lainer. Russ. Metall. 2013, 652 (2013). https://doi.org/ 10.1134/S0036029513090073
- A.V. Kuzin, A.V. Lobanov, V.A. Shelonzev et al. Russ. J. Phys. Chem. B. 18, 669 (2024). https://doi.org/10.1134/S1990793124700106
- Ya.G. Avdeev, M.V. Tyurina, Yu.I. Kuznetsov. Int. J. Corros. Scale Inhib. 3(4), 246 (2014). https://doi.org/10.17675/2305-6894-2014-3-4-246-253
- M.A.V. Devanathan, Z. Stachurski. Proc. R. Soc. Lond. A. 270А, 90 (1962). https://doi.org/10.1098/rspa.1962.0205
- M.A.V. Devanathan, Z. Stachurski. J. Electrochem. Soc. 111(5), 619 (1964). https://doi.org/10.1149/1.2426195
- R.N. Iyer, H.W. Pickering, M. Zamanzadeh. J. Electrochem. Soc., 136. 2463 (1989). https://doi.org/10.1149/1.2097429
- A.I. Marshakov, T.A. Nenasheva, A.A. Rybkina et al. Prot. Met., 43, 77 (2007). https://doi.org/10.1134/S0033173207010110
- A.I. Marshakov, T.A. Nenasheva. Prot. Met., 38, 556 (2002). https://doi.org/10.1023/A:1021265903879
- C.D. Wagner, L.E. Davis, M.V. Zeller at al. Surf. Inter. Face Anal. 3. 211 (1981). https://doi.org/10.1002/sia.740030506
- D.A. Shirley. Phys. Rev. B. 5, 4709 (1972). https://doi.org/10.1103/PhysRevB.5.4709
- N. A. Kolpakova, T.S. Minakova. Thermodynamics and Kinetics of Sorption Concentrating (Tomsk Polytechnic Univ., Tomsk, 2011) [in Russian]
- B.N. Afanas’ev, Yu.P. Skobochkina, G.G. Serdyukova. Physicochemical bases of the action of corrosion inhibitors (Publishing house of UdGU, Izhevsk, 1990, 20) [in Russian].
- K. Kiuchi, R.B. McLellan. Acta Metall., 31, 961 (1983). https://doi.org/10.1016/0001-6160(83)90192-X
- Y.G. Avdeev, Y.I. Kuznetsov. Russ. J. Phys. Chem. A. 97, 413 (2023). https://doi.org/10.1134/S0036024423030056
- M.B. Bushuev, L.G. Lavrenova, V.N. Ikorskii et al., Russ. J. Coord. Chem., 30(4), 284 (2004). https://doi.org/10.1023/B:RUCO.0000022805.47477.75
- J.G. Haasnoot. Coord. Chem. Rev., 200–202, 131 (2000). https://doi.org/10.1016/S0010-8545(00)00266-6
- T. Huxel, S. Riedel, J. Lach et al., Z. Anorg. Allg. Chem., 638(6), 925 (2012). https://doi.org/10.1002/zaac.201200117
- C.B. Donker, J.G. Haasnoot, W.L Groeneveld. Transition Met. Chem., 5, 368 (1980). https://doi.org/10.1007/BF01396963
Supplementary files
