An Electrostatic Mechanism for the Formation of Hybrid Nanostructures Based on Gold Nanoparticles and Cationic Porphyrins
- Autores: Povolotskiy A.V.1, Soldatova D.A.1, Lukyanov D.A.1, Solovieva E.V.1
-
Afiliações:
- Institute of Chemistry, St. Petersburg State University
- Edição: Volume 42, Nº 12 (2023)
- Páginas: 70-74
- Seção: ХИМИЧЕСКАЯ ФИЗИКА НАНОМАТЕРИАЛОВ
- URL: https://cijournal.ru/0207-401X/article/view/675014
- DOI: https://doi.org/10.31857/S0207401X23120087
- EDN: https://elibrary.ru/QTFPLH
- ID: 675014
Citar
Resumo
interaction of cationic porphyrin with gold nanoparticles (GNPs) coated with polymer shells
with positive and negative surface potentials in an aqueous solution is studied. The criteria for the formation
of hybrid molecular-plasmon nanostructures based on the determination of the luminescence quenching
mechanism according to the Stern-Volmer equation and the change in the shape of the porphyrin luminescence
spectrum are established. The effect of the sign of the zeta potential of GNPs on the formation of hybrid
molecular-plasmon nanostructures due to electrostatic interaction is established.
Sobre autores
A. Povolotskiy
Institute of Chemistry, St. Petersburg State University
Email: alexey.povolotskiy@spbu.ru
St. Petersburg, Russia
D. Soldatova
Institute of Chemistry, St. Petersburg State University
Email: alexey.povolotskiy@spbu.ru
St. Petersburg, Russia
D. Lukyanov
Institute of Chemistry, St. Petersburg State University
Email: alexey.povolotskiy@spbu.ru
St. Petersburg, Russia
E. Solovieva
Institute of Chemistry, St. Petersburg State University
Autor responsável pela correspondência
Email: alexey.povolotskiy@spbu.ru
St. Petersburg, Russia
Bibliografia
- Lascu A., Birdeanu M., Taranu B., Fagadar-Cosma E. // J. Chem. 2018. V. 2018. P. 1; https://doi.org/10.1155/2018/5323561
- Kundu S., Patra A. // Chem. Rev. 2017. V. 117. P. 712; https://doi.org/10.1021/acs.chemrev.6b00036
- Yang J., Peng Y., Li S. et al. // Coord. Chem. Rev. 2022. V. 456. P. 214391; https://doi.org/10.1016/j.ccr.2021.214391
- Тертышная Ю.В., Лобанов А.В., Хватов А.В. // Хим. физика. 2020. Т. 39. № 11. С. 52; https://doi.org/10.31857/S0207401X20110138
- Yanagi R., Zhao T., Solanki D. et al. // ACS Energy Lett. 2022. V. 7. P. 432; https://doi.org/10.1021/acsenergylett.1c02516
- Zhang S., Geryak R., Geldmeier J. et al. // Chem. Rev. 2017. V. 117. P. 12942; https://doi.org/10.1021/acs.chemrev.7b00088
- Povolotskiy A., Evdokimova M., Konev A., Kolesnikov I., Povolotckaia A., Kalinichev A. // Springer Ser. Chem. Phys. 2019. V. 119. P. 173; https://doi.org/10.1007/978-3-030-05974-3_9
- Клименко И.В., Градова М.А., Градов О.В., Бибиков С.Б., Лобанов А.В. // Хим. физика. 2020. Т. 39. № 5. С. 43; https://doi.org/10.31857/S0207401X20050076
- Romera C., Sabater L., Garofalo A. et al. // Inorg. Chem. 2010. V. 49. P. 8558; https://doi.org/10.1021/ic101178n
- Schulz S., Ziganshyna S., Lippmann N. et al. // Microorganisms. 2022. V. 10. P. 858; https://doi.org/10.3390/microorganisms10050858
- Liu X., Atwater M., Wang J., Huo Q. // Colloids Surf., B. 2007. V. 58. P. 3; https://doi.org/10.1016/j.colsurfb.2006.08.005
- Ou Z., Yao H., Kimura K. // Chem. Lett. 2006. V. 35. P. 782; https://doi.org/10.1246/cl.2006.782
Arquivos suplementares
