An Electrostatic Mechanism for the Formation of Hybrid Nanostructures Based on Gold Nanoparticles and Cationic Porphyrins

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

interaction of cationic porphyrin with gold nanoparticles (GNPs) coated with polymer shells
with positive and negative surface potentials in an aqueous solution is studied. The criteria for the formation
of hybrid molecular-plasmon nanostructures based on the determination of the luminescence quenching
mechanism according to the Stern-Volmer equation and the change in the shape of the porphyrin luminescence
spectrum are established. The effect of the sign of the zeta potential of GNPs on the formation of hybrid
molecular-plasmon nanostructures due to electrostatic interaction is established.

Sobre autores

A. Povolotskiy

Institute of Chemistry, St. Petersburg State University

Email: alexey.povolotskiy@spbu.ru
St. Petersburg, Russia

D. Soldatova

Institute of Chemistry, St. Petersburg State University

Email: alexey.povolotskiy@spbu.ru
St. Petersburg, Russia

D. Lukyanov

Institute of Chemistry, St. Petersburg State University

Email: alexey.povolotskiy@spbu.ru
St. Petersburg, Russia

E. Solovieva

Institute of Chemistry, St. Petersburg State University

Autor responsável pela correspondência
Email: alexey.povolotskiy@spbu.ru
St. Petersburg, Russia

Bibliografia

  1. Lascu A., Birdeanu M., Taranu B., Fagadar-Cosma E. // J. Chem. 2018. V. 2018. P. 1; https://doi.org/10.1155/2018/5323561
  2. Kundu S., Patra A. // Chem. Rev. 2017. V. 117. P. 712; https://doi.org/10.1021/acs.chemrev.6b00036
  3. Yang J., Peng Y., Li S. et al. // Coord. Chem. Rev. 2022. V. 456. P. 214391; https://doi.org/10.1016/j.ccr.2021.214391
  4. Тертышная Ю.В., Лобанов А.В., Хватов А.В. // Хим. физика. 2020. Т. 39. № 11. С. 52; https://doi.org/10.31857/S0207401X20110138
  5. Yanagi R., Zhao T., Solanki D. et al. // ACS Energy Lett. 2022. V. 7. P. 432; https://doi.org/10.1021/acsenergylett.1c02516
  6. Zhang S., Geryak R., Geldmeier J. et al. // Chem. Rev. 2017. V. 117. P. 12942; https://doi.org/10.1021/acs.chemrev.7b00088
  7. Povolotskiy A., Evdokimova M., Konev A., Kolesnikov I., Povolotckaia A., Kalinichev A. // Springer Ser. Chem. Phys. 2019. V. 119. P. 173; https://doi.org/10.1007/978-3-030-05974-3_9
  8. Клименко И.В., Градова М.А., Градов О.В., Бибиков С.Б., Лобанов А.В. // Хим. физика. 2020. Т. 39. № 5. С. 43; https://doi.org/10.31857/S0207401X20050076
  9. Romera C., Sabater L., Garofalo A. et al. // Inorg. Chem. 2010. V. 49. P. 8558; https://doi.org/10.1021/ic101178n
  10. Schulz S., Ziganshyna S., Lippmann N. et al. // Microorganisms. 2022. V. 10. P. 858; https://doi.org/10.3390/microorganisms10050858
  11. Liu X., Atwater M., Wang J., Huo Q. // Colloids Surf., B. 2007. V. 58. P. 3; https://doi.org/10.1016/j.colsurfb.2006.08.005
  12. Ou Z., Yao H., Kimura K. // Chem. Lett. 2006. V. 35. P. 782; https://doi.org/10.1246/cl.2006.782

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (51KB)
3.

Baixar (222KB)
4.

Baixar (76KB)
5.

Baixar (111KB)

Declaração de direitos autorais © А.В. Поволоцкий, Д.А. Солдатова, Д.А. Лукьянов, Е.В. Соловьёва, 2023