Empirical Model of the Charge Carriers’ Photogeneration in Organic Solar Cells
- Authors: Lukin L.V.1
-
Affiliations:
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
- Issue: Vol 42, No 12 (2023)
- Pages: 54-63
- Section: Электрические и магнитные свойства материалов
- URL: https://cijournal.ru/0207-401X/article/view/675012
- DOI: https://doi.org/10.31857/S0207401X23120075
- EDN: https://elibrary.ru/ZGRECX
- ID: 675012
Cite item
Abstract
A model of the photocurrent generation of charge carriers in blends of donor (D) and acceptor (A)
materials structured on the nanoscale is considered. The absorption of a quantum of light in one of these
materials creates a molecular exciton, which can reach the interface between the D and A phases and form an
interfacial charge transfer (CT) exciton on this interface, which dissociates into an electron-hole pair. The
probabilities of the dissociation of CT excitons into free current carriers are calculated as a function of the
electric field and the thermalization length of the electron-hole pair.
About the authors
L. V. Lukin
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Author for correspondence.
Email: leonid.v.lukin@gmail.com
Moscow, Russia
References
- Brédas J.-L., Norton J.E., Cornil J., Coropceany V. // Acc. Chem. Res. 2009. V. 42. № 11. P. 1691.
- Clarke T.M., Durrant J.R. // Chem. Rev. 2010. V. 110. № 11. P. 6736.
- Александрова Е.Л. // Физика и техника полупроводников. 2004. Т. 38. № 10. С. 1153.
- Sosorev A.Yu., Paraschuk D.Yu. // Isr. J. Chem. 2014. V. 54. № 5–6. P. 650.
- Sosorev A.Yu., Godovsky D.Yu, Paraschuk D.Yu. // Phys. Chem. Chem. Phys. 2018. V. 20. № 5. P. 3658.
- Vandewal K. // Annu. Rev. Phys. Chem. 2016. V. 67. P. 113.
- Bakulin A.A., Rao A., Pavelyev V.G. et al. // Science. 2012. V. 335. № 6074. P. 1340.
- Ohkita H., Cook S., Astuti Y. et al. // J. Amer. Chem. Soc. 2008. V. 130. № 10. P. 3030.
- Gélinas S., Rao A., Kumar A. et al. // Science. 2014. V. 343. № 6170. P. 512.
- Dimitrov S.D., Bakulin A. A., Nielsen C. B. et al. // J. Amer. Chem. Soc. 2012. V. 134. № 44. P. 18189.
- Dimitrov S.D., Durrant J.R. // Chem. Mater. 2014. V. 26. № 1. P. 616.
- Shoaee S., Subramaniyan S., Xin H. et al. // Adv. Funct. Mater. 2013. V. 23. № 26. P. 3286.
- Wiemer M., Nenashev A.V., Jansson F., Baranovskii S.D. // Appl. Phys. Lett. 2011. V. 99. № 1. 013302; https://doi.org/10.1063/1.3607481
- Baranovskii S.D., Wiemer M., Nenashev A.V., Jansson F., Gebhard F. // J. Phys. Chem. Lett. 2012. V. 3. № 9. P. 1214; https://doi.org/10.1021/jz300123k
- Tscheuschner S., Bässler H., Huber K., Köhler A. // J. Phys. Chem. B. 2015. V. 119. № 32. P. 10359; https://doi.org/10.1021/acs.jpcb.5b05138
- Lukin L.V. // Chem. Phys. 2021. V. 551. 111327; https://doi.org/10.1016/j.chemphys.2021.111327
- Wojcik M., Tachiya M. // Chem. Phys. Lett. 2012. V. 537. P. 58.
- Servaites J.D., Savoie B.M., Brink J.B, Marks T.J., Ratner M.A. // Energy Environ. Sci. 2012. V. 5. № 8. P. 8343.
- Hilczer M., Tachiya M. // J. Phys. Chem. C. 2010. V. 114. № 14. P. 6808.
- Trukhanov V.A., Bruevich V.V., Paraschuk D.Y. // Phys. Rev. B. 2011. V. 84. № 20. 205318.
- Onsager L. // Phys. Rev. 1938. V. 54. № 8. P. 554.
- Silinsh E.A., Kolesnikov V.A., Muzikante I.J., Balode D.R. // Phys. Stat. Sol. B. 1982. V. 113. № 1. P. 379.
- Silinsh E.A., Čápek V. Organic molecular crystals. Interaction, localization and transport phenomena. N.Y.: AIP Press, 1994.
- Sano H., Mozumder A. // J. Chem. Phys. 1977. V. 66. № 2. P. 689.
- Vithanage D.A., Devižis A., Abramavičius V. et al. // Nat. Commun. 2013. V. 4. Article number 2334.
- Melianas A., Pranculis V., Xia Y. et al. // Adv. Energy Mater. 2017. V. 7. № 9. 1 602 143.
- Melianas A., Kemerink M. // Adv. Mater. 2019. V. 31. № 22. 1806004.
- Baranovski S.D., Faber T., Hensel F., Thomas P. // J. Non-Cryst. Solids. 1998. V. 227–230. Part 1. P. 158.
- Caruso D., Troisi A. // Proc. Natl. Acad. Sci. U.S.A. 2012. V. 109. № 34. P. 13498.
- Rice S.A. Diffusion-limited reactions. Amsterdam: Elsevier, 1985.
- Hong K.M., Noolandi J. // J. Chem. Phys. 1978. V. 68. № 11. P. 5163.
- Hong K.M., Noolandi J. // Ibid. 1978. V. 69. № 11. P. 5026.
- Noolandi J., Hong K.M. // Ibid. 1979. V. 70. № 7. P. 3230.
- Loi M.A., Toffani S., Muccini M. et al. // Advan. Funct. Mater. 2007. V.17. № 13. P. 2111.
- Piliego C., Loi M.A. // J. Mater. Chem. 2012. V.22. № 10. P. 4141.
- Seki K., Wojcik M. // J. Phys. Chem. C. 2017. V. 121. № 6. P. 3632.
- Mauzerall D., Ballard S.G. // Annu. Rev. Phys. Chem. 1982. V. 33. P. 377.
- Kobayashi S., Takenobu T., Mori S., Fujiwara A., Iwasa Y. // Sci. Technol. Adv. Materials. 2003. V. 4. № 4. P. 371.
- Devižis A., Hertel D., Meerholz K., Gulbinas V., Moser J.-E. // Organic Electronics. 2014. V. 15. № 12. P. 3729.
- Mihailetchi V.D., van Duren J.K.J., Blom P.W.M. et al. // Advan. Funct. Mater. 2003. V. 13. № 1. P. 43.
- Goliber T.E., Peristein J.H. // J. Chem. Phys. 1984. V. 80. № 9. P. 4162.
- Wang Y., Suna A. // J. Phys. Chem. B. 1997. V. 101. № 29. P. 5627.
- Leng C., Qin H., Si Y., Zhao Y. // J. Phys. Chem. C. 2014. V. 118. № 4. P. 1843.
- Karsten B.P., Bouwer R.K.M., Hummelen J.C., Williams R.M., Janssen R.A.J. // Photochem. Photobiol. Sci. 2010. V. 9. № 7. P. 1055.
- Kawashima Y., Ohkubo K., Fukuzumi S. // J. Phys. Chem. A. 2013. V. 117. № 31. P. 6737.
- Шаулов А.Ю., Владимиров Л.В., Грачев А.В. и др. // Хим. физика. 2020. Т. 39. № 1. С. 75; https://doi.org/10.31857/S0207401X2001015X
- Симбирцева Г.В., Пивень Н.П., Бабенко С.Д. // Хим. физика. 2020. Т. 39. № 12. С. 60; https://doi.org/10.31857/S0207401X20120146
- Симбирцева Г.В., Пивень Н.П., Бабенко С.Д. // Хим. физика. 2022. Т. 41. № 4. С. 32; https://doi.org/10.31857/S0207401X22040094
- Герасимов Г.Н., Громов В.Ф., Иким М.И., Трахтенберг Л.И. // Хим. физика. 2021. Т. 40. № 11. С. 65; https://doi.org/10.31857/S0207401X21110030
- Terlecki J., Fiutak J. // Intern. J. Radiat. Phys. Chem. 1972. V. 4. № 4. P. 469.
Supplementary files
