Ignition of Coal Microparticles by Laser Pulses of The Second Harmonic of a Ndodymium Laser in the Q-Switched Regime

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The ignition of pelletized samples of hard coals of the long-flame gas (DG), gas (G), fat (L), coke (K) grades with particle sizes ≤63 μm by laser pulses (λ = 532 nm, τi = 10 ns) was studied. When the critical radiation energy density Hcr(1), specific for each grade of coal, is exceeded, an optical breakdown occurs and a dense plasma with a continuous emission spectrum is formed. As the plasma expands and rarefies, the spectra show the emission of carbon ions CII, excited nitrogen atoms N, excited carbon molecules C2, and carbon monoxide CO. The plasma glow intensity peaks at the end of the laser pulse, and the glow relaxation time is ~1 μs. The plasma glow amplitude increases nonlinearly with increasing laser pulse energy density. At radiation energy density HHcr(2), specific for each grade of coal, thermochemical reactions are initiated in the volume of microparticles and coal particles are ignited in a submillisecond time interval.

Full Text

Restricted Access

About the authors

B. P. Aduev

Institute of Coal Chemistry and Material Science, Russian Academy of Sciences

Author for correspondence.
Email: lesinko-iuxm@yandex.ru
Russian Federation, Kemerovo

D. R. Nurmukhametov

Institute of Coal Chemistry and Material Science, Russian Academy of Sciences

Email: lesinko-iuxm@yandex.ru
Russian Federation, Kemerovo

Ya. V. Kraft

Institute of Coal Chemistry and Material Science, Russian Academy of Sciences

Email: lesinko-iuxm@yandex.ru
Russian Federation, Kemerovo

Z. R. Ismagilov

Institute of Coal Chemistry and Material Science, Russian Academy of Sciences

Email: lesinko-iuxm@yandex.ru
Russian Federation, Kemerovo

References

  1. Chen J.C., Taniguchi M., Narato K., Ito K. // Combust and Flame. 1994. V. 97. № 1. P. 107; https://doi.org/10.1016/0010-2180(94)90119-8
  2. Glova A.F., Lysikov A.Ju., Zverev M.M. // Quantum Electron. 2009. V. 39(6). P. 537; https://doi.org/10.1070/QE2009v039n06ABEH013906
  3. Taniguchi M., Kobayashi H., Kiyama K., Shimogori Y. // Fuel. 2009. V. 88. № 8. P. 1478; https://doi.org/10.1016/j.fuel.2009.02.009
  4. Aduev B.P., Nurmukhametov D.R., Kraft Y.V., Ismagilov Z.R. // Combust. Explos. Shock Waves. 2020. V. 58. P. 5 https://doi.org/10.1134/S0010508222050148
  5. Aduev B.P., Nurmukhametov D.R., Kraft Y.V., Ismagilov Z.R. // Opt. Spectrosc. 2022. V. 130. P. 962; https://doi.org/10.21883/EOS.2022.08.54769.3750-22
  6. Aduev B.P., Nurmukhametov D.R., Kraft Y.V., Ismagilov Z.R. // Russ. J. Phys. Chem. B. 2022. V. 16. P. 227; https://doi.org/10.1134/S1990793122020026
  7. Aduev B.P., Nurmukhametov D.R., Nelyubina N.V., Kovalev R.Y., Ismagilov Z.R. // Russ. J. Phys. Chem. B. 2016. V. 10. P. 963; https://doi.org/10.1134/S1990793116060154
  8. Aduev B.P., Nurmukhametov D.R., Kovalev R.Y., Kraft Ya.V., Ismagilov Z.R. // Opt. Spectr. 2018. V. 125. P. 293; doi: 10.1134/S0030400X18080039
  9. Aduev B.P., Kraft Y.V., Nurmukhametov D.R., Ismagilov Z.R. // Combust. Sci. Technol. 2022. P. 1; https://doi.org/10.1080/00102202.2022.2075699
  10. Aduev B.P., Nurmukhametov D.R., Belokurov G.M., Kraft Ya.V, Ismagilov Z.R. // Solid Fuel Chem. 2021. V. 55. P. 194; https://doi.org/10.3103/S0361521921030022
  11. Korotkikh A.G., Sorokin I.V., Arkhipov V.A. // Russ. J. Phys. Chem. B. 2022. V. 16. P. 253; https://doi.org/10.1134/S1990793122020075
  12. Valiulin S.V., Onishchuk A.A., Paleev D.Yu. // Russ. J. Phys. Chem. B. 2021. V. 40. P. 41; https://doi.org/10.31857/S0207401X21040130
  13. Aduev B.P., Nurmukhametov D.R., Nelyubina N.V., Liskov I.Yu., Ismagilov Z.R. // mRuss. J. Phys. Chem. B. 2023. V. 17. P. 361; https://doi.org/10.1134/S1990793123020033.
  14. Shvaiko V.N. Photochronograph control “Vzglyad-2A”-Processing (Sight-Processing): A.s. № 2004610836. Rospatent. 2004. [in Russian].
  15. Levshin L.V., Saletskii A.M. Luminescence and its measurements (Mosk. Gos. Univ., Moscow, 1989). [in Russian].
  16. Delone N.B. Interaction of laser radiation with matter. Lecture course. Study guide. (Moscow: Nauka, Ch. ed. Phys.-Math. lit., 1989). [in Russian].
  17. Gorbunov A.V., Klassen N.V., Maksimuk M.Yu. // Tech. Phys. 1992. V. 62. P. 39;
  18. Liu K., He C., Zhu C. et al. // Trends Analyt. Chem. 2021. V. 143. P. 116357; https://doi.org/10.1016/j.trac.2021.116357
  19. Cai J., Dong M., Zhang Y. et al. // Spectrochim. Acta, Part B. 2021. V. 180. P. 106195; https://doi.org/10.1016/j.sab.2021.106195
  20. Pearse R., Gaydon A. The Identification of Molecular Spectra (Springer, Netherlands, 1976).
  21. NIST Standard Reference Database 78; https://dx.doi.org/10.18434/T4W30F.
  22. Ikegami T., Nakanishi F., Uchiyama M., Ebihara K. // Thin Solid Films. 2004. V. 457. № 1. P. 7; https://doi.org/10.1016/j.tsf.2003.12.033
  23. Ultrashort Light Pulses. Ed. S. Shapiro. M.: Mir. 1981. 480 p.
  24. Aduev B.P., Nurmukhametov D.R., Belokurov G.M., Kraft Ya.V., Ismagilov Z.R. // Opt. Spectrosc. 2020. V. 128. P. 2008. https://doi.org/10.1134/S0030400X20120838

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Functional scheme of the experimental setup: 1 - neutral light filters; 2 - beam splitter plate; 3 - rotating mirror; 4 - lens (F = 25 cm); 5 - experimental assembly with sample; 6, 8, 9 - lenses (F = 10 cm); 7 - spectral-temporal slit; L - pulsed Nd: YAG-laser, F - photodiode, FX - photochronograph, P - polychromator, SFX - spectrophotochronograph “VZGLYAD-2A”, BS - synchronization unit, PC - personal computer, PEU - photomultiplier tube, K - experimental camera.

Download (153KB)
3. Fig. 2. Typical oscillograms of the first (a) and second (b) luminescence types of DG coal (the inset shows the initial section of luminescence in the time interval 0-60 ns; the dashed line is a laser pulse).

Download (121KB)
4. Fig. 3. Dependence of the probability of occurrence (P) of the detected types of luminescence for DG coal on the energy density of laser pulses: 1 - first type of luminescence, Hcr(1) = (0.40 ± 0.05) J/cm2 (Fig. 2a); 2 - second type of luminescence, Hcr(2) = (3.9 ± 0.4) J/cm2 (Fig. 2b).

Download (42KB)
5. Fig. 4. Dependence of the luminescence intensity amplitude I on the energy density H at the moment of time corresponding to the end of the laser pulse for the following coal grades: a - DG, b - G, c - Zh, d - K.

Download (146KB)
6. Fig. 5. Luminescence spectra of samples at the moment of time 20 ns from the beginning of the laser pulse for the following coal grades: a - DG, b - G, c - Zh, d - K.

Download (177KB)
7. Fig. 6. Luminescence spectra of samples at the moment of time 100 ns from the beginning of the laser pulse of the following coal grades: a - DG, b - G, c - Zh, d - K

Download (248KB)
8. Fig. 7. Luminescence spectra of samples at the time moments corresponding to maxima on the kinetic curves of Fig. 2b for the following coal types: a - DG, b - G, c - Zh, d - K. Dashed curves - approximation by Planck's formula at temperature (2400 ± 100) K.

Download (142KB)
9. Fig. 8. Dependences of Hcr(1) (a) and Hcr(2) (b) on the volatile yield, V daf, measured when exposed to radiation with λ = 1064 (1) and 532 nm (2).

Download (105KB)

Copyright (c) 2024 Russian Academy of Sciences