Kinetics of Thermal Decomposition of N-Propargil Derivatives of 7H-Difurazanofuxanoazepine and 7H-Trifurasanoazepine

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The thermal stability of the propargyl derivatives of 7H-difurazanofuroxanoazepine and 7H-trifurazanoazepine in isothermal and non-isothermal modes has been studied. Formal kinetic regularities of decomposition and temperature dependences of reaction rate constants are determined. The thermal stability of propargyl, cyanomethyl, allyl and amine derivatives of azepines is compared.

Full Text

Restricted Access

About the authors

A. I. Kazakov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: akazakov@icp.ac.ru
Russian Federation, Chernogolovka

D. B. Lempert

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: akazakov@icp.ac.ru
Russian Federation, Chernogolovka

A. V. Nabatova

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: akazakov@icp.ac.ru
Russian Federation, Chernogolovka

E. L. Ignatieva

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: akazakov@icp.ac.ru
Russian Federation, Chernogolovka

D. V. Dashko

Tekhnolog Special Design and Technological Bureau

Email: akazakov@icp.ac.ru
Russian Federation, Saint Petersburg

V. V. Raznoschikov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: akazakov@icp.ac.ru
Russian Federation, Chernogolovka

L. S. Yanovskiy

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences; Moscow Energetic Institute

Email: akazakov@icp.ac.ru
Russian Federation, Chernogolovka; Moscow

References

  1. Lempert D.B., Ignatieva E.L., Stepanov A.I. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 1. P. 1.
  2. Lempert D.B., Ignatieva E.L., Stepanov A.I. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 3. P. 702.
  3. Lempert D.B., Ignatieva E.L., Stepanov A.I. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 5. P. 1106.
  4. Lempert D.B., Ignatieva E.L., Stepanov A.I. et al. // Russ. J. Phys. Chem. B. 2024. V. 18. № 1. P. 172.
  5. Kazakov A.I., Lempert D.B., Nabatova A.V. et al. // Russian Journal of Applied Chemistry. 2019. V. 92(12). P. 1696 (2019); https://doi.org/10.1134/S0044461819130036
  6. Kazakov A.I., Lempert D.B., Nabatova A.V. et al. // Russ. J. Phys. Chem. B. 2023. V. 42. № 5. P. 3.
  7. Kazakov A.I., Lempert D.B., Nabatova A.V. et al. // Russ. J. Phys. Chem. B. 2023. V. 42. № 9. P. 3.
  8. Zholudev A.F., Kislov M.B., Averkov I.S. et al. // Russian Chemical Bulletin. 2021. V. 70(4). P. 685; https://doi.org/10.1007/s11172-021-3137-z
  9. Yanovskii L.S., Lempert D.B., Raznoschikov V.V., Aver’kov I.S. // Russian Journal of Applied Chemistry. 2019. V. 92(3). P. 367; https://doi.org/10.1134/S1070427219030078
  10. Lempert D.B., Raznoschikov V.V., Yanovskii L.S. // Russian Journal of Applied Chemistry. 2019. V. 92.(12). P. 1690; https://doi.org/10.1134/S1070427219120097
  11. Galperin L.N., Kolesov Yu.R., Mashkinov L.B., Turner Yu.E. // Differential automatic calorimeters (DAC) for various purposes, Proceedings of the Sixth All-Union Conference on Calorimetry. Tbilisi: Metsniereba, 1973. P. 539.
  12. Manelis G.B., Nazin G.M., Rubtsov Yu.I., Strunin V.A. // Thermal decomposition and combustion of explosives and propellants. London and New York: Taylor and Francis Group, 2003. 376 p.; https://doi.org/10.1201/9781482288261

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Scheme 1

Download (79KB)
3. Scheme 2

Download (55KB)
4. Fig. 1. TG (1) and DSC (2) curves of thermal decomposition of AzPrg. Suspension mass ~2 mg, heating rate - 5 K/min, argon purge rate - 40 ml/min.

Download (75KB)
5. Fig. 2. Dependence curves of AzPrg thermal decomposition reaction rate versus decomposition depth at different temperatures: 1 - 188.8, 2 - 200.4, 3 - 210.5, 4 - 220.0, 5 - 230.0 C.

Download (72KB)
6. Fig. 3. Kinetic dependences of AzPrg decomposition depth on time at different temperatures: 1 - 188.8, 2 - 200.4, 3 - 210.5, 4 - 220.0, 5 - 230.0 C. Dots - experiment, solid curves - calculation by equation (1).

Download (87KB)
7. Fig. 4. TG (1) and DSC (2) curves of thermal decomposition of Az(O)Prg. Suspension mass ~2 mg, heating rate - 5 K/min, argon purge rate - 40 ml/min.

Download (71KB)
8. Fig. 5. Dependences of the heat release rate dQ/dt on the amount of heat released by a given moment of time during the decomposition of the compound Az(O)Prg at different temperatures: a) 1 - 119.7, 2 - 124.6, 3 - 129.5, 4 - 136.1, 5 - 142.0; b) 6 - 150.1, 7 - 170.2, 8 - 174.8, 9 - 185.5, 10 - 190.0C.

Download (104KB)
9. Fig. 6. Kinetic dependences of the amount of heat Qt, released during thermal transformation of Az(O)Prg compound, on time at different temperatures: 1 - 119.7, 2 - 124.6, 3 - 129.5, 4 - 136.1, 5 - 142.0, 6 - 150.1, 7 - 170.2, 8 - 174.8C. Dots - experiment, solid curves - calculation by equation (2).

Download (121KB)

Copyright (c) 2024 Russian Academy of Sciences