Study of patterns and mechanisms of combustion of powdered and granulated T-C-B system
- Authors: Vasilyev D.S.1, Kochetkov R.A.1, Seplyarskii B.S.1
-
Affiliations:
- Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences
- Issue: Vol 43, No 4 (2024)
- Pages: 53-65
- Section: Combustion, explosion and shock waves
- URL: https://cijournal.ru/0207-401X/article/view/674961
- DOI: https://doi.org/10.31857/S0207401X24040077
- EDN: https://elibrary.ru/VELQTT
- ID: 674961
Cite item
Abstract
Experimental studies of the combustion patterns of the ternary system (100 – x)(Ti + C) – x(Ti + 2B) of bulk density in powder and granular form used for the synthesis of composite ceramics TiC–TiB2 were carried out. The study shows that the dependence of the powder mixture combustion rate on the Ti + 2B content has a non-monotonic character, which is associated with the influence of impurity gas release on the combustion process. By removing the influence of impurity gas by granulation, a monotonic dependence with two characteristic sections was obtained. For the granulated mixture, an increase in the Ti + 2B content > 60 wt. % leads to a change from the conductive combustion mode to the convective one, accompanied by a sharp increase in the combustion rate. For the conductive combustion mode, the combustion rate of the substance inside the granule and the combustion transfer time from the granule to the granule were determined, which allowed us to estimate the inhibitory effect of impurity gas release on the combustion rate of powder mixtures of different composition. For the convective combustion mode, it was shown that a decrease in the content of the gasifying additive in the mixture (granulation with ethyl alcohol) led to an unexpected result: an increase in the combustion rate of the mixture. For compositions with (Ti + 2B) > 60 wt. % the combustion rate with counter filtration of impurity gases was determined for the first time, which made it possible to estimate the front rate increase according to the filtration combustion theory. According to XRD results, the combustion products of all compositions contain only two main phases TiC and TiB2.
Keywords
Full Text

About the authors
D. S. Vasilyev
Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences
Author for correspondence.
Email: d.s.vasilyev@mail.ru
Russian Federation, Chernogolovka
R. A. Kochetkov
Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences
Email: d.s.vasilyev@mail.ru
Russian Federation, Chernogolovka
B. S. Seplyarskii
Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences
Email: seplb1@mail.ru
Russian Federation, Chernogolovka
References
- L. Liu, S. Aydinyan, T. Minasyan, I. Hussainova, Appl. Sci. 10 (2020). https://doi.org/10.3390/app10093283
- H. Attar, M. Bonisch, M. Calin, L. Zhang, S. Scudino, J. Eckert. Acta Mater. 76 (2014). https://doi.org/10.1016/j.actamat.2014.05.022
- M. Xia, A. Liu, Z. Hou, et al. J. Alloys Compd. 728 (2017). https://doi.org/10.1016/j.jallcom.2017.09.033
- A. S. Rogachev, A.S. Mukasyan Combustion for material synthesis. New York: CRC Press, Taylor and Francis Group, (2015).
- P. M. Krishenik, S. V. Kostin, S. A. Rogachev, Russ. J. Phys. Chem. B 16 (2), 283 (2022). https://doi.org/10.1134/S1990793122020087
- S. A. Rogachev, K. G. Shkadinskii, P. M. Krishenik, Russ. J. Phys. Chem. B 16 (4), 680 (2022). https://doi.org/10.1134/S1990793122020099
- B.S. Seplyarskii // Dokl. Phys. Chem. 396, (2004). https://doi.org/10.1023/B:DOPC.0000033505.34075.0a
- N. M. Rubtsov, B. S. Seplyarskii, M. I. Alymov, Ignition and Wave Processes in Combustion of Solids. Springer International Publishing AG, Cham. Switzerland, (2017).
- N. A. Kochetov, B. S. Seplyarsky, Russ. J. Phys. Chem. B 16 (1), 66 (2022). https://doi.org/10.1134/S1990793122010079
- A. G. Merzhanov, A. S. Mukasyan, Solid Flame Combustion. Moscow: Torus Press, (2007).
- A. S. Mukasyan, V. A. Shugaev, N. V.Kiryakov, Combust. Explos. Shock Waves 29, 1 (1993). https://doi.org/10.1007/BF00755319
- S. G. Vadchenko, Int. J. Self-Propag. High-Temp. Synth. 19 (2010). https://doi.org/10.3103/S1061386210030064
- S. G. Vadchenko, Combust. Explos. Shock Waves. 55 (2019). https://doi.org/10.1134/S0010508219030055
- B. S. Seplyarskii, R. A. Kochetkov, Int. J. Self-Propag. High-Temp. Synth. 26, 2 (2017). https://doi.org/10.3103/S106138621702011X
- B. S. Seplyarskii, A. G. Tarasov, R. A. Kochetkov, I. D. Kovalev, Combust. Explos. Shock Waves 50, 3 (2014). https://doi.org/10.1134/S0010508214030071
- D. Vallauri, I.C. Atias Adrian, A. Chrysanthou, J. Eur. Ceram. Soc. 28, 8 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.11.011
- I. P. Borovinskaya, V. K. Prokudina, V. I. Ratnikov Russ. J. Non-Ferr. Met. 4 (2010)
- I. P. Borovinskaya, A. N. Pityulin, Self-Propagating High-Temperature Synthesis of Materials. London, United Kingdom: Taylor and Francis Ltd., (2002).
- D. Brodkin, S. Kalidindi, M. Barsoum A. Zavaliangos, J. Am. Ceram. Soc. 79, 7 (1996).
- D. Tijo, M. Masanta, Surf. Coat. Technol. 344, 25 (2018). https://doi.org/10.1016/j.surfcoat.2018.03.083
- J. C. Qian, Z. F. Zhou, W. J. Zhang, et al., Surf. Coat. Technol. 270, 25 (2015). https://doi.org/10.1016/j.surfcoat.2015.02.043
- A. I. Korchagin, V. E. Gavrilov, A. B. Zarko, et al., Combust. Explos. Shock Waves 53, 6 (2017). https://doi.org/10.15372/FGV20170607
- A. G. Hakobyan, S. K. Dolukhanyan, I. P. Borovinskaya, Combust. Explos. Shock Waves 3 (1978).
- V. A. Shcherbakov, A. Н. Pityulin, Combust. Explos. Shock Waves 5 (1983).
- Н. Е. Grigoryan, A. S. Rogachev, А. Е. Sytschev, Int. J. Self-Propag. High-Temp. Synth. 6, 1 (1997).
- B. S. Seplyarskii, R. A. Kochetkov, T. G. Lisina, N. M. Rubtsov, N. I. Abzalov, Combust. Flame 236 (2022). https://doi.org/10.1016/j.combustflame.2021.111811
- S. G. Vadchenko, Int. J Self-Propag. High-Temp. Synth. 24 (2015). https://doi.org/10.3103/S1061386215020107
- V. N. Nikogosov, G. A. Nersesyan, V. Shcherbakov, S. Kharatyan, A.S. Shteinberg, Int. J Self-Propag. High-Temp. Synth. 8 (1999).
- B. S. Seplyarskii, R. A. Kochetkov, T. G. Lysina, N. I. Abzalov, Combust. Explos. Shock Waves 57, 1 (2021). https://doi.org/10.15372/FGV20210107
- B. S. Seplyarsky, N. I. Abzalov, R. A. Kochetkov, T. G. Lisina, Russ. J. Phys. Chem. B 15 (2), 242 (2021). https://doi.org/10.31857/S0207401X21030109
- B. S. Seplyarskii, R. A. Kochetkov, Russ. J. Phys. Chem. B. 11 (5), 798 (2017). https://doi.org/10.1134/S1990793117050116
- A. A. Zenin, A. Merzhanov, G. A. Nesyan, Combust. Explos. Shock Waves 1 (1981). https://doi.org/10.1007/BF00772787
- O. V. Lapshin, V. G. Prokofev, V. K. Smolyakov, Int. J. Self-Propag. High-Temp. Synth. 27, 1 (2018). https://doi.org/10.15372/FGV20170607
- A. P. Aldushin, A. G. Merzhanov, Heat Wave Propagation in Heterogeneous Media. Novosibirsk: Science, (1988).
- A. P. Babichev, N. A. Babushkina, A. M. Bratskovsky, et al., Physical quantities: Handbook. Moscow: Energoatomizdat (1991).
Supplementary files
