Study of patterns and mechanisms of combustion of powdered and granulated T-C-B system

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Experimental studies of the combustion patterns of the ternary system (100 – x)(Ti + C) – x(Ti + 2B) of bulk density in powder and granular form used for the synthesis of composite ceramics TiC–TiB2 were carried out. The study shows that the dependence of the powder mixture combustion rate on the Ti + 2B content has a non-monotonic character, which is associated with the influence of impurity gas release on the combustion process. By removing the influence of impurity gas by granulation, a monotonic dependence with two characteristic sections was obtained. For the granulated mixture, an increase in the Ti + 2B content > 60 wt. % leads to a change from the conductive combustion mode to the convective one, accompanied by a sharp increase in the combustion rate. For the conductive combustion mode, the combustion rate of the substance inside the granule and the combustion transfer time from the granule to the granule were determined, which allowed us to estimate the inhibitory effect of impurity gas release on the combustion rate of powder mixtures of different composition. For the convective combustion mode, it was shown that a decrease in the content of the gasifying additive in the mixture (granulation with ethyl alcohol) led to an unexpected result: an increase in the combustion rate of the mixture. For compositions with (Ti + 2B) > 60 wt. % the combustion rate with counter filtration of impurity gases was determined for the first time, which made it possible to estimate the front rate increase according to the filtration combustion theory. According to XRD results, the combustion products of all compositions contain only two main phases TiC and TiB2.

Full Text

Restricted Access

About the authors

D. S. Vasilyev

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Author for correspondence.
Email: d.s.vasilyev@mail.ru
Russian Federation, Chernogolovka

R. A. Kochetkov

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Email: d.s.vasilyev@mail.ru
Russian Federation, Chernogolovka

B. S. Seplyarskii

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Email: seplb1@mail.ru
Russian Federation, Chernogolovka

References

  1. L. Liu, S. Aydinyan, T. Minasyan, I. Hussainova, Appl. Sci. 10 (2020). https://doi.org/10.3390/app10093283
  2. H. Attar, M. Bonisch, M. Calin, L. Zhang, S. Scudino, J. Eckert. Acta Mater. 76 (2014). https://doi.org/10.1016/j.actamat.2014.05.022
  3. M. Xia, A. Liu, Z. Hou, et al. J. Alloys Compd. 728 (2017). https://doi.org/10.1016/j.jallcom.2017.09.033
  4. A. S. Rogachev, A.S. Mukasyan Combustion for material synthesis. New York: CRC Press, Taylor and Francis Group, (2015).
  5. P. M. Krishenik, S. V. Kostin, S. A. Rogachev, Russ. J. Phys. Chem. B 16 (2), 283 (2022). https://doi.org/10.1134/S1990793122020087
  6. S. A. Rogachev, K. G. Shkadinskii, P. M. Krishenik, Russ. J. Phys. Chem. B 16 (4), 680 (2022). https://doi.org/10.1134/S1990793122020099
  7. B.S. Seplyarskii // Dokl. Phys. Chem. 396, (2004). https://doi.org/10.1023/B:DOPC.0000033505.34075.0a
  8. N. M. Rubtsov, B. S. Seplyarskii, M. I. Alymov, Ignition and Wave Processes in Combustion of Solids. Springer International Publishing AG, Cham. Switzerland, (2017).
  9. N. A. Kochetov, B. S. Seplyarsky, Russ. J. Phys. Chem. B 16 (1), 66 (2022). https://doi.org/10.1134/S1990793122010079
  10. A. G. Merzhanov, A. S. Mukasyan, Solid Flame Combustion. Moscow: Torus Press, (2007).
  11. A. S. Mukasyan, V. A. Shugaev, N. V.Kiryakov, Combust. Explos. Shock Waves 29, 1 (1993). https://doi.org/10.1007/BF00755319
  12. S. G. Vadchenko, Int. J. Self-Propag. High-Temp. Synth. 19 (2010). https://doi.org/10.3103/S1061386210030064
  13. S. G. Vadchenko, Combust. Explos. Shock Waves. 55 (2019). https://doi.org/10.1134/S0010508219030055
  14. B. S. Seplyarskii, R. A. Kochetkov, Int. J. Self-Propag. High-Temp. Synth. 26, 2 (2017). https://doi.org/10.3103/S106138621702011X
  15. B. S. Seplyarskii, A. G. Tarasov, R. A. Kochetkov, I. D. Kovalev, Combust. Explos. Shock Waves 50, 3 (2014). https://doi.org/10.1134/S0010508214030071
  16. D. Vallauri, I.C. Atias Adrian, A. Chrysanthou, J. Eur. Ceram. Soc. 28, 8 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.11.011
  17. I. P. Borovinskaya, V. K. Prokudina, V. I. Ratnikov Russ. J. Non-Ferr. Met. 4 (2010)
  18. I. P. Borovinskaya, A. N. Pityulin, Self-Propagating High-Temperature Synthesis of Materials. London, United Kingdom: Taylor and Francis Ltd., (2002).
  19. D. Brodkin, S. Kalidindi, M. Barsoum A. Zavaliangos, J. Am. Ceram. Soc. 79, 7 (1996).
  20. D. Tijo, M. Masanta, Surf. Coat. Technol. 344, 25 (2018). https://doi.org/10.1016/j.surfcoat.2018.03.083
  21. J. C. Qian, Z. F. Zhou, W. J. Zhang, et al., Surf. Coat. Technol. 270, 25 (2015). https://doi.org/10.1016/j.surfcoat.2015.02.043
  22. A. I. Korchagin, V. E. Gavrilov, A. B. Zarko, et al., Combust. Explos. Shock Waves 53, 6 (2017). https://doi.org/10.15372/FGV20170607
  23. A. G. Hakobyan, S. K. Dolukhanyan, I. P. Borovinskaya, Combust. Explos. Shock Waves 3 (1978).
  24. V. A. Shcherbakov, A. Н. Pityulin, Combust. Explos. Shock Waves 5 (1983).
  25. Н. Е. Grigoryan, A. S. Rogachev, А. Е. Sytschev, Int. J. Self-Propag. High-Temp. Synth. 6, 1 (1997).
  26. B. S. Seplyarskii, R. A. Kochetkov, T. G. Lisina, N. M. Rubtsov, N. I. Abzalov, Combust. Flame 236 (2022). https://doi.org/10.1016/j.combustflame.2021.111811
  27. S. G. Vadchenko, Int. J Self-Propag. High-Temp. Synth. 24 (2015). https://doi.org/10.3103/S1061386215020107
  28. V. N. Nikogosov, G. A. Nersesyan, V. Shcherbakov, S. Kharatyan, A.S. Shteinberg, Int. J Self-Propag. High-Temp. Synth. 8 (1999).
  29. B. S. Seplyarskii, R. A. Kochetkov, T. G. Lysina, N. I. Abzalov, Combust. Explos. Shock Waves 57, 1 (2021). https://doi.org/10.15372/FGV20210107
  30. B. S. Seplyarsky, N. I. Abzalov, R. A. Kochetkov, T. G. Lisina, Russ. J. Phys. Chem. B 15 (2), 242 (2021). https://doi.org/10.31857/S0207401X21030109
  31. B. S. Seplyarskii, R. A. Kochetkov, Russ. J. Phys. Chem. B. 11 (5), 798 (2017). https://doi.org/10.1134/S1990793117050116
  32. A. A. Zenin, A. Merzhanov, G. A. Nesyan, Combust. Explos. Shock Waves 1 (1981). https://doi.org/10.1007/BF00772787
  33. O. V. Lapshin, V. G. Prokofev, V. K. Smolyakov, Int. J. Self-Propag. High-Temp. Synth. 27, 1 (2018). https://doi.org/10.15372/FGV20170607
  34. A. P. Aldushin, A. G. Merzhanov, Heat Wave Propagation in Heterogeneous Media. Novosibirsk: Science, (1988).
  35. A. P. Babichev, N. A. Babushkina, A. M. Bratskovsky, et al., Physical quantities: Handbook. Moscow: Energoatomizdat (1991).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic diagram of the experimental setup: 1 – argon cylinder, 2 – argon flow sensors, 3 – gas pressure sensors, 4 – gas switch (I – nitrogen, II – argon, III – supply shut off), 5 – tungsten spiral, 6 – charge, 7 – substrate, 8 – digital video camera, 9 – personal computer for recording data from sensors and video camera.

Download (255KB)
3. Fig. 2. External view of the upper part of the quartz tube with an opening for the implementation of a counter-flow of impurity gas during combustion of granulated mixtures.

Download (194KB)
4. Fig. 3. External appearance of the initial mixture and combustion frames: powder (a) and granulated mixtures of two fractions: 0.4–0.8 (b) and 1.4–2 mm (c).

Download (250KB)
5. Fig. 4. Dependences of the combustion rate of powder (1) and granulated mixtures of fine 0.4–0.8 (2) and coarse 1.4–2 mm (3) on the mass content of Ti + 2B.

Download (66KB)
6. Fig. 5. Dependences of the combustion rate of granulated mixtures with a change in composition from 60(Ti + 2B) to (Ti + 2B) in the absence of PVB (1) and with the addition of PVB (2); a – large granules (1.4–2 mm), b – small granules (0.4–0.8 mm).

Download (92KB)
7. Fig. 6. Values ​​of combustion rates of large granules 1.4–2 mm in size with a content of (Ti + 2B) ≥ 60 wt. %: with PVB (a) and without PVB (b); with co-current (black columns) and counter (gray) filtration of impurity gas.

Download (74KB)

Copyright (c) 2024 Russian Academy of Sciences