Physicochemical properties of disperse-filled ethylene-octene copolymer

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The article is aimed at developing innovations in the field of hybrid polymer nanomaterials and investigating their structural, thermodynamic, and physico-mechanical properties. Filling the ethylene-octene copolymer with Ni nanoparticles as well as basalt scales increases the elasticity of the composite by a 25% and also causes an increase in strength by a 15%. Obtained results open possibility to evaluate influence of chemical nature, sizes and content of different kinds of fillers for improvement thermostability and elasticity of the new hybrid polymer nanomaterials.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Myasoedova

Federal Research Center of Chemical Physics named after N.N. Semenov, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: veravm777@gmail.com
Ресей, Moscow

D. Golobokov

University of Science and Technology “MISIS”

Email: veravm777@gmail.com
Ресей, Moscow

Әдебиет тізімі

  1. Trakhtenberg L.I., Ikim M.I., Ilegbusi O.J. et al. // Chemosensors. 2023. V. 11. № 6. P. 320. https://doi.org/10.3390/ chemosensors11060320
  2. Kozhushner M.A., Trakhtenberg L.I., Bodneva V.L. et al. // J. Phys. Chem. C. 2014. V. 118. № 21. P. 11440. https://doi.org/10.1021/jp501989k
  3. Trakhtenberg L.I., Gerasimov G.N., Grigor’ev E.I. // Russ. J. Phys. Chem. A. 1999. V. 73. P. 209.
  4. Zhukov A.M., Solodilov V.I., Tretyakov I.V. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. P. 926. https://doi.org/10.1134/S199079312205013X
  5. Guymon G.G., Malakooti M.H. // J. Polym. Sci. 2022. V. 60. № 8. P. 1300. https://doi.org/10.1002/pol.20210867
  6. Nesmelov A.A., Zavyalov S.A., Malakhov S.N. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 4. P. 826.
  7. Trzepieci’nski T., Najm S.M., Sbayti M. et al. // J. Compos. Sci. 2021. V. 5. № 8. P. 217. https://doi.org/10.3390/jcs5080217
  8. Tran V.V., Nu T.T.V., Jung H.-R. et al. // Polymers. 2021. V. 13. № 18. P. 3031. https://doi.org/10.3390/polym13183031
  9. Aloev V.Z., Zhirikova Z.M., Tarchokova M.A. // ChemChemTech. 2020. V. 63. P. 81. https://doi.org/10.6060/ivkkt.20206304.6158
  10. Li Z., Wu W., Chen H. et al. // Roy. Soc. Chem. Adv. 2013. V. 3. P. 6417. https://doi.org/10.1039/c3ra22482a
  11. Lebedeva E.A., Astafieva S.A., Trukhinov D.K. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. P. 191. https://doi.org/10.1134/S1990793123010244
  12. Myasoedova V., Zakharova E., Vasiljev I. // Annals DAAAM Proc. Intern. DAAAM Sympos. 2021. V. 32. P. 177. https://doi.org/10.2507/32nd.daaam.proceedings.027

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. SEM micrographs of synthesized Ni nanoparticle powder samples with different resolutions.

Жүктеу (281KB)
3. Fig. 2. Histogram of the size distribution of Ni nanoparticles.

Жүктеу (119KB)
4. Fig. 3. X-ray phase study data for Ni nanoparticles.

Жүктеу (84KB)
5. Fig. 4. Photos of Ni/NiO/SEO composite extrudate samples in the form of strands.

Жүктеу (167KB)
6. Fig. 5. Photos of BC composite extrudate samples in the form of strands.

Жүктеу (233KB)
7. Fig. 6. Nomograms obtained from the experimental data: maximum strength (a) and relative elongation (b) of composites based on EOS filled with basalt scales with the following sizes: 0–50 μm (1), 50–100 μm (2), 100–160 μm (3), 0–300 μm (4).

Жүктеу (329KB)
8. Fig. 7. Simultaneous TG/DSC analysis of EOS in the temperature range of 20–350 °C.

Жүктеу (118KB)
9. Fig. 8. Simultaneous TG/DSC analysis of the 0.5 wt. % Ni/EOS composite in the temperature range of 20–350 °C.

Жүктеу (123KB)
10. Fig. 9. TGA curves for the following composites: 10 wt. % BC/EOS (1), EOS (2), 2.5 wt. % BC/EOS (3), 5 wt. % BC/EOS (4).

Жүктеу (102KB)
11. Fig. 10. DSC curves for the same composite compositions as in Fig. 9.

Жүктеу (131KB)

© Russian Academy of Sciences, 2024