Multimodel study of the influence of atmospheric waves from a tropospheric source on the ionosphere during a geomagnetic storm on may 27–29, 2017
- Authors: Kurdyaeva Y.A.1, Bessarab F.S.1, Borchevkina O.P.1, Klimenko M.V.1
-
Affiliations:
- Institute of Terrestrial Magnetism, Ionosphere, and Radio-Wave Propagation, Kaliningrad Branch, Russian Academy of Sciences
- Issue: Vol 43, No 6 (2024)
- Pages: 91-104
- Section: Химическая физика атмосферных явлений
- URL: https://cijournal.ru/0207-401X/article/view/674940
- DOI: https://doi.org/10.31857/S0207401X24060105
- ID: 674940
Cite item
Abstract
The influence of atmospheric waves generated by a tropospheric convective source on the state of the upper atmosphere and ionosphere during the recovery phase of the geomagnetic storm on May 27–28, 2017 was studied. A new approach to accounting for atmospheric waves generated by tropospheric convective sources in large-scale atmospheric models without using wave parameterization is proposed and implemented. The developed approach makes it possible to comprehensively study the effects generated by atmospheric waves against the background of various geophysical events, including geomagnetic storms. The multimodel study has shown that the proposed approach allows us to reproduce perturbations of the critical frequency ionosphere F₂ layer caused by the propagation of atmospheric waves generated by a tropospheric meteorological source. It is shown that the inclusion of a heat inflow source simulating the propagation of atmospheric waves from the lower atmosphere in the global model enhances the effects of a geomagnetic storm, which manifests itself as an additional decrease in the critical frequency of the F₂ layer, which can reach 7 % of absolute values.
Full Text

About the authors
Y. A. Kurdyaeva
Institute of Terrestrial Magnetism, Ionosphere, and Radio-Wave Propagation, Kaliningrad Branch, Russian Academy of Sciences
Email: olga.borchevkina@mail.ru
Russian Federation, Kaliningrad
F. S. Bessarab
Institute of Terrestrial Magnetism, Ionosphere, and Radio-Wave Propagation, Kaliningrad Branch, Russian Academy of Sciences
Email: olga.borchevkina@mail.ru
Russian Federation, Kaliningrad
O. P. Borchevkina
Institute of Terrestrial Magnetism, Ionosphere, and Radio-Wave Propagation, Kaliningrad Branch, Russian Academy of Sciences
Author for correspondence.
Email: olga.borchevkina@mail.ru
Russian Federation, Kaliningrad
M. V. Klimenko
Institute of Terrestrial Magnetism, Ionosphere, and Radio-Wave Propagation, Kaliningrad Branch, Russian Academy of Sciences
Email: olga.borchevkina@mail.ru
Russian Federation, Kaliningrad
References
- Kuverova V.V., Adamson S.O., Berlin A.A. et al. // Adv. Space Res. 2019. V. 64. P. 1876; https://doi.org/10.1016/j.asr.2019.05.041
- Golubkov G.V., Adamson S.O., Borchevkina O.P. et al. // Russ. J. Phys. Chem. 2022. V. 16. P. 508; https://doi.org/10.1134/S1990793122030058
- Bakhmetieva N.V., Grigoriev G.I., Kalinina E.E. // Russ. J. Phys. Chem. B 2023. V. 17. P. 495–502; https://doi.org/10.1134/S1990793123020215
- Bakhmetieva N.V., Zhemyakov I.N. // Russ. J. Phys. Chem. B 2022. V. 16. P. 990; https://doi.org/10.1134/S1990793122050177
- Forbes J.M., Palo S.E., Zhang X., Atmos J. // Sol.-Terr. Phys. 2000. V. 62. P. 685; https://doi.org/10.1016/S1364-6826(00)00029-8
- Karpov I.V., Karpov M.I., Borchevkina O.P. // Russ. J. Phys. Chem. B 2019. V. 13. P. 714; https://doi.org/10.1134/S1990793119040067
- Ratovsky K.G., Yasyukevich Y.V., Vesnin A.M. et al. // Russ. J. Phys. Chem. 2020. V. 14. P. 862; https://doi.org/10.1134/S1990793120050243
- Fuller-Rowell T., Wu F., Akmaev R. et al. // J. Geophys. Res. 2010. V. 115. № A00G08. P. 1; https://doi.org/10.1029/2010JA015524
- Goncharenko L., Chau J.L., Condor P. et al. // Geophys. Res. Lett. 2013. V. 40. P. 4982; https://doi.org/10.1002/grl.50980.
- Yasyukevich A.S., Padokhin A.M., Mylnikova A.A. et al. // Memoirs of the Faculty of Physics. 2018. № 3. P. 1830901.
- Snively J., Pasko V. // Geophys. Res. Lett. 2003. V. 30. № 24. P. 303; https://doi.org/10.1029/2003GL018436
- Perevalova N.P., Polyakova A.S., Pogoreltsev A.I. // Geomagn. aeronom. 2013. V. 53. P. 397; https://doi.org/10.1134/S0016793213030146
- Gavrilov N.M., Koval A.V., Pogoreltsev A.I., Savenkova E.N. // Geomagn. aeronom. 2014. V. 54. P. 381; https://doi.org/10.1134/S0016793214030050
- Fovell R., Durran D., Holton J.R. // J. Atmos. Sci. 1992. V. 49. № 16. P. 1427; https://doi.org/10.1175/1520-0469(1992)049<1427:NSOCGS>2.0.CO;2
- Lindzen R.S., Holton J.R. // J. Atmos. Sci. 1968. V. 25. P. 1095; https://doi.org/10.1175/1520-0469(1968)025<1095:ATOTQB>2.0.CO;2
- Alexander M.J., Dunkerton T.J. // J. Atmos. Sci. 1999. V. 56. № 24. P. 4167; https://doi.org/10.1175/1520-0469(1999)056<4167:ASPOMF>2.0.CO;2
- Hines C.O. // J. Atmos. Sol.-Terr. Phys. 1997. V. 59. P. 371; https://doi.org/10.1016/S1364-6826(96)00079-X
- Meraner K., Schmidt H., Manzini E. et al. // J. Geophys. Res. 2016. V. 121. P. 12045; https://doi.org/10.1002/2016JD025012
- Costantino L., Heinrich P., Mzé N., Hauchecorne A. // Ann. Geophys. 2015. V. 33. P. 1155; https://doi.org/10.5194/angeo-33-1155-2015
- Borchevkina O.P., Kurdyaeva Y.A., Dyakov Y.A. // Atmosphere. 2021. V. 12 (11). P. 1384; https://doi.org/10.3390/atmos12111384
- Gavrilov N.M., Kshevetskii S.P. // Earth, Planets, Space. 2014. V. 66. P. 88; https://doi.org/10.1186/1880-5981-66-88
- Meng X., Komjathy A., Verkhoglyadova O.P. et al. // Geophys. Res. Lett. 2020. V. 42. P. 4736; https://doi.org/10.1002/2015GL064610
- Yamashita C., Liu H.-L., Chu X. // Geophys. Res. Lett. 2010. V. 37. P. L09803; https://doi.org/10.1029/2009GL042351
- Becker E., Vadas S.L. // J. Geophys. Res. Space Physics. 2020. V. 125. P. e2020JA028034; https://doi.org/10.1029/2020JA028034
- Kurdyaeva Y.A., Kshevetskii S.P., Gavrilov N.M., Golikova E.V. // Numerical Analysis and Applications. 2017. V. 10. P. 324; https://doi.org/10.1134/S1995423917040048
- Kshevetskii S.P. // Comput. Math. Math. Phys. 2001. V. 41. P. 273.
- Kshevetskii S.P. // Comput. Math. Math. Phys. 2002. V. 42. P. 1510.
- Kshevetskii S.P. // Nonlinear Process. Geophys. 2001. V. 8. P. 37; https://doi.org/10.5194/npg-8-37-2001
- Picone J.M., Hedin A.E., Drob D.P. // J. Geophys. Res. 2002. V. A12. P. 1468; https://doi.org/10.1029/2002JA009430
- Namgaladze A.A., Korenkov Yu.N., Klimenko V.V. et al. // PAGEOPH. 1988. V. 127. P. 219; https://doi.org/10.1007/BF00879812
- Namgaladze A.A., Korenkov Yu.N., Klimenko V.V. et al. // J. Atmos. Sol.-Terr. Phys. 1991. V. 53. P. 1113; https://doi.org/10.1016/0021-9169(91)90060-K
- Klimenko M.V., Bryukhanov V.V., Klimenko V.V. // Geomagn. aeronom. 2006. V. 46. P. 457; https://doi.org/10.1134/S0016793206040074
- Bessarab F.S., Korenkov Yu.N., Klimenko M.V. et al. // J. Atmos. Sol.-Terr. Phys. 2012. V. 90–91. P. 77; https://doi.org/10.1016/j.jastp.2012.09.005
- Klimenko M.V., Klimenko V.V., Zakharenkova E. et al. // Earth, Planets, Space. 2012. V. 64. P. 441; https://doi.org/10.5047/eps.2011.07.004
- Karpov I.V., Bessarab F.S., Korenkov Y.N., Klimenko V.V., Klimenko M.V. // Russ. J. Phys. Chem. B 2016. V. 16. P. 117; https://doi.org/10.1134/S1990793116010048
- Kshevetskii S.Р., Kurdyaeva Y.А., Gavrilov N.М. // Izvestiya, Atmospheric and Oceanic Physics. 2022. V. 58. P. 30; https://doi.org/10.31857/S0002351523010078
- Gavrilov N.M. // Izvestiya of the Academy of Sciences of the USSR. Atmospheric and Oceanic Physics. 1974. V. 10. P. 83.
- Kurdyaeva Y.A., Borchevkina O.P., Golikova E.V., Karpov I.V. // Bulletin of the Russian Academy of Sciences: Physics.2024. V. 88.
- Nigussie M., Moldwin M., Yizengaw E. // Atmosphere. 2022. V. 13. P. 1414; https://doi.org/10.3390/atmos13091414
- John S.R., Kumar K.K. // Clim. Dyn. 2012. V. 39. P. 1489; https://doi.org/10.1007/s00382-012-1329-9
- Hindley N.P., Wright C.J., Smith N.D. et al. // Atmos. Chem. Phys. 2015. V. 15. P. 7797; https://doi.org/10.5194/acp-15-7797-2015
- Karpov I.V., Borchevkina O.P., Vasilev P.A. // Russ. J. Phys. Chem. B 2020. V. 14. P. 362; https://doi.org/10.1134/S1990793120020220
- Sori T., Shinbori A., Otsuka Y. et al. // J. Geophys. Res. Space Phys. 2023. V. 128. P. e2022JA031157; https://doi.org/10.1029/2022JA031157
- Kotova D.S., Zakharenkova I.E., Klimenko M.V. et al. // Russ. J. Phys. Chem. B 2020. V. 14. P. 377; https://doi.org/10.1134/S1990793120020232
- Ratovsky K.G., Yasyukevich Y.V., Vesnin A.M. et al. // Atmosphere. 2020. V. 11. P. 1; https://doi.org/10.3390/atmos11121308
- Pirog O.M., Polekh N.M., Tashchilin A.V. et al. // Adv. Space Res. 2006. V. 37. P. 1081; https://doi.org/10.1016/j.asr.2006.02.005
- Mayr H.G., Harris I., Spencer N.W. // Rev. Geophys. 1978. V. 16. P. 539; https://doi.org/10.1029/RG016i004p₀0539
- Ratovsky K.G., Klimenko M.V., Klimenko V.V. et al. // Sol.-Terr. Phys. 2018. V. 4. P. 26; https://doi.org/10.12737/stp-44201804
- Foster J.C. // J. Geophys. Res. 1993. V. 98. P. 1675; https://doi.org/10.1029/92JA02032
- Lu G., Richmond A.D., Roble R.G., Emery B.A. // J. Geophys. Res. 2001. V. 106. P. 24493; https://doi.org/10.1029/2001JA000003
- Borchevkina O.P., Karpov I.V. // Geomagn. Aeronom. 2017. V. 57. P. 624; https://doi.org/10.1134/S0016793217040041
- Polyakova A.S., Perevalova N.P. // Adv. Space Res. 2011. V. 48. P. 1196; https://doi.org/10.1016/j.asr.2011.06.014
- Bondur V.G., Pulinets S.A. // Issledovaniya zemli iz kosmosa. 2012. V. 3. P. 3.
- Rishbeth H., Mendillo M. // J. Atmos. Sol.-Terr. Phys. 2001. V. 63. P. 1661; https://doi.org/10.1016/S1364-6826(01)00036-0.
- Forbes J.M., Zhang X., Talaat E.R. et al. // J. Geophys. Res. 2003. V. 108. P. 1033; https://doi.org/10.1029/2002JA009262
- Karpov I.V., Kshevetskii S.P. // J. Atmos. Sol.-Terr. Phys. 2017. V. 164. P. 89; https://doi.org/10.1016/j.jastp.2017.07.019
- Kshevetskii S.P., Kurdyaeva Y.A., Gavrilov N.M. // Russ. J. Phys. Chem. B 2023. V. 17. P. 1228; https://doi.org/10.1134/S1990793123050238
Supplementary files
