Mathematical simulation of the atmospheric electric field disturbance during geomagnetic storm on 17 march 2015

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

It follows from the observational data that during geomagnetic storms, variations of the atmospheric electric field occur. In the present paper, we present simulation results of ionospheric electric fields during the main phase of the geomagnetic storm on March 17, 2015, within the framework of a quasi-stationary model of a conductor consisting of the atmosphere and the ionosphere. For this purpose, the satellite data on the global distribution of currents between the magnetosphere and the ionosphere are used to describe the magnetospheric source of the electric field. A variation of the electric potential in the ionosphere leads to a variation of the electric field in the entire atmosphere, including its surface layer. It is important that during a geomagnetic storm, the observatory in which the atmospheric electric field is measured significantly changes its position relative to the direction of the Sun. This leads to significant changes in the ionospheric conductivity above the observatory, which affects both the ionospheric electric field and the atmospheric part of the global electrical circuit. Therefore when assessing the effect of a geomagnetic storm on the atmospheric electric field in a particular observatory, it is necessary to take into account local time when comparing measurement data with geomagnetic activity indices. For the storm of March 17–18, 2015, we found that taking into account the variations of the ionospheric electric field when calculating the atmospheric electric field allows us to reproduce the disturbances of the fair weather electric field observed at the Borok Geophysical Observatory. Based on the simulation results, it is shown that during extremely strong magnetic storms, additional atmospheric electric field variations in some places on the Earth have the same scale as the fair weather field itself.

Full Text

Restricted Access

About the authors

S. S. Zamay

Krasnoyarsk Scientific Center SB RAS

Email: denisen@icm.krasn.ru
Russian Federation, Krasnoyarsk

V. V. Denisenko

Institute of Computational Modelling SB RAS

Author for correspondence.
Email: denisen@icm.krasn.ru
Russian Federation, Krasnoyarsk

M. V. Klimenko

West Department of Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation RAS

Email: denisen@icm.krasn.ru
Russian Federation, Kaliningrad

V. V. Klimenko

West Department of Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation RAS

Email: denisen@icm.krasn.ru
Russian Federation, Kaliningrad

S. V. Anisimov

Borok Geophysical Observatory of the Schmidt Institute of Physics of the Earth RAS

Email: denisen@icm.krasn.ru
Russian Federation, Borok, Yaroslavl

References

  1. Volland H. Atmospheric electrodynamics. Heidelberg: Spring, 1984.
  2. Shalimov S.L., Rozhnoi A.A., Solov’eva M.S., Ol’shanskaya E.V. // Phys. Solid Earth. 2019. V. 55. P. 168; https://doi.org/10.1134/S1069351319010087
  3. Karpov I.V., Borchevkina O.P., Vasilev P.A. // Rus. J. Phys. Chem. B 2020. V. 14. P. 362; https://doi.org/10.1134/S1990793120020220
  4. Leble S.B., Smirnova E.S. // Rus. J. Phys. Chem. B 2020. V. 14. P. 367; https://doi.org/10.1134/S1990793120020268
  5. Klimenko M.V., Ratovsky K.G., Klimenko V.V. et al. // Rus. J. Phys. Chem. B 2020. V. 15. P. 928; https://doi.org/10.1134/S1990793121050171
  6. Golubkov G.V., Adamson S.O. et al. // Rus. J. Phys. Chem. B 2022. V. 16. P. 508; ttps://doi.org/10.1134/S1990793122030058
  7. Olson D.E. // Pure Appl. Geophys. 1971. V. 84. P. 118;
  8. Apsen A.G., Kanonidi H.D., Chernysheva S.P., Chetaev D.N., Sheftel V.M. Magnetospheric effects in atmospheric electricity. M.: Nauka, 1988 (in Russian).
  9. Frank-Kamenetsky A.V., Troshichev O.A., Burns G.B., Papitashvili V.O. // J. Geophys. Res. 2001. V. 106. P. 179; https://doi.org/10.1029/2000JA900058
  10. Nikiforova N.N., Kleimenova N.G., Kozyreva O.V., Kubitsky M., Mikhnovsky S. // Geomagn. Aeron. 2003. V. 42. № 1. P. 32 (in Russian).
  11. Kleimenova N.G., Kozyreva O.V., Michnowski S., Kubicki M. // Geomagn. Aeron. 2008. V. 48. P. 622; https://doi.org/10.1134/S0016793208050071
  12. Smirnov S.E., Mikhailova G.A., Kapustina O.V. // Geomagn. Aeron. 2013. V. 53. P. 502; https://doi.org/10.1134/S0016793213040130
  13. Anisimov S.V., Shikhova N.M., Kleimenova N.G. // Geomagn. Aeron. 2021. V. 61. P. 180; https://doi.org/10.1134/S001679322102002X
  14. Anisimov S.V., Aphinogenov K.V., Galichenko S.V. et al. // Izvestiya, Atmosph. Oceanic Phys. 2023. V. 59. P. 522; https://doi.org/10.1134/S000143382305002X
  15. Richmond A.D. // J. Geomagn. Geoelectr. 1979. V. 31. P. 287. Axford W.I. // Rev. Geophys. 1969. № 1, 2. P. 421; https://doi.org/10.1029/RG007i001p₀0421
  16. Pudovkin M.I. // Space Sci. Rev. 1974. V. 16. P. 727;
  17. Gonzalez W.D., Joselyn J.A., Kamide Y. et al. // J. Geophys. Res. 1994. V. 99. № A4. P. 5771; https://doi.org/10.1029/93JA02867.
  18. Ratovsky K.G., Klimenko M.V., Yasyukevich Yu.V., Vesnin A.M., Klimenko V.V. // Rus. J. Phys. Chem. B 2020. V. 14. № 5. P. 862; https://doi.org/10.1134/S1990793120050243
  19. Milan S.E., Carter J.A., Korth H. et al. // J. Geophys. Res. Space Phys. 2015. V. 120. P. 10415; https://doi.org/10.1002/2015JA021680
  20. Denisenko V.V., Rycroft M.J., Harrison R.G. // Surv. Geophys. 2019. V. 40. P. 1; https://doi.org/10.1007/s10712-018-9499-6
  21. Bilitza D., Altadill D., Truhlik V. et al. // Space Weather. 2017. V. 15. P. 418; https://doi.org/10.1002/2016SW001593
  22. Alken P., Thébault E., C.D. Beggan et al. // Earth Planets Space. 2021. V. 73. P. 49; https://doi.org/10.1186/s40623-020-01288-x
  23. Emmert J.T., Drob D.P., Picone J.M. et al. // Earth Space Sci. 2021. V. 8. P. e2020EA001321; https://doi.org/10.1029/2020EA001321.
  24. Weimer D.R. // J. Geophys. Res. 1999. V. 104. P. 185.
  25. Denisenko V.V., Zamay S.S. // Planet. Space Sci. 1992. V. 40. P. 941.
  26. Burrell A.G., Chisham G., Milan S.E. et al. // Ann. Geophys. 2020. V. 38. P. 481; https://doi.org/10.5194/angeo-38-481-2020
  27. Denisenko V.V. // Sib. Math. J. 2002. V. 43. P. 1055.
  28. Denisenko V.V. Energy methods for elliptic equations with asymmetric coefficients, Novosibirsk: Publ. house RAS SB, 1995 (in Russian).
  29. Lunyushkin S.B. // Res. Geomagn., Aeronomy Solar Phys. 1988. V. 81. P. 181 (in Russian).
  30. Pustovalov K., Nagorskiy P., Oglezneva M., Smirnov S. // Atmosphere. 2022. V. 13. P. 614; https://doi.org/10.3390/atmos13040614
  31. Harrison R.G. // Surv. Geophys. 2013. V. 34. P. 209; https://doi.org/10.1007/s10712-012-9210-2A
  32. Mareev E.A. // Phys. Usp. 2010. V. 53. P. 504; https://doi.org/10.3367/UFNe.0180.201005h.0527
  33. Golubkov G.V., Adamson S.O. et al. // Rus. J. Phys. Chem. B 2022. V. 16. № 3. P. 508; https://doi.org/10.1134/S1990793122030058

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Time course of the Dₛₜ index (dashed line), the total current I between the magnetosphere and ionosphere (thick line) and the potential difference δV in the northern polar cap obtained in model calculations (thin line) during the geomagnetic storm of March 17–18, 2015.

Download (106KB)
3. Fig. 2. a – Pedersen integral conductivity Sₚ, model for 20 UT 17.03.2015 in local magnetic time – geomagnetic latitude coordinates. Level lines with a step of 1/3 in a logarithmic scale. Dashed lines: 0.46, 1.0, 2.2, 4.6 Sm (the last value corresponds to the dashed line closest to the first solid line); solid lines: 10, 22, 46 Sm. b – Field-aligned current density at 20 UT 17.03.2015 in local magnetic time – geomagnetic latitude coordinates. The step between isolines is 0.6 μA/m², lines corresponding to current densities of ±0.3, ±0.9, 1.5, 2.1 μA/m² are plotted. The dashed lines show negative current values ​​(current flowing from the ionosphere into the magnetosphere). The boundary of the northern polar cap is shown by a dotted line, the position of the Borok observatory is marked by a black circle (geomagnetic coordinates are 124° E, 54° N).

Download (326KB)
4. Fig. 3. Distribution of ionospheric electric potential in the Northern Hemisphere at 20 UT in the coordinates local magnetic time – geomagnetic latitude. Potential isolines are plotted with a step between isolines of 20 kV, dashed lines are isolines with negative values ​​of electric potential. Potential values ​​in the shown northern part of the ionosphere vary from –162 to +171 kV. The dotted line shows the boundary of the northern polar cap. The black circle marks the location of the Borok observatory.

Download (183KB)
5. Fig. 4. Time course of the variation in the ground electric field strength dEz measured at the Borok observatory [13], with a positive shift of 68 V/m (thin line). The model contribution of the magnetic storm is shown by the bold line; MLT is the local magnetic time in the Borok settlement.

Download (95KB)
6. Fig. 5. Global spatial distribution of the ionospheric potential in geomagnetic coordinates (longitude–latitude) obtained in model calculations for the time of 14 UT. The potential isolines are plotted with a step of 50 kV. The dashed lines show the isolines with negative potential values. In the northern polar cap, the potential varies from –244 to +72 kV, in the southern – from –340 to +280 kV. The circles at the geomagnetic latitude of 0º show local noon (light circle) and local midnight (dark circle). The position of the Borok observatory is also marked with a circle in the northern hemisphere. The dotted lines show the geomagnetic equator and the boundaries of the polar caps.

Download (298KB)

Copyright (c) 2024 Russian Academy of Sciences