Mathematical simulation of the atmospheric electric field disturbance during geomagnetic storm on 17 march 2015
- Authors: Zamay S.S.1, Denisenko V.V.2, Klimenko M.V.3, Klimenko V.V.3, Anisimov S.V.4
-
Affiliations:
- Krasnoyarsk Scientific Center SB RAS
- Institute of Computational Modelling SB RAS
- West Department of Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation RAS
- Borok Geophysical Observatory of the Schmidt Institute of Physics of the Earth RAS
- Issue: Vol 43, No 6 (2024)
- Pages: 81-90
- Section: Химическая физика атмосферных явлений
- URL: https://cijournal.ru/0207-401X/article/view/674939
- DOI: https://doi.org/10.31857/S0207401X24060094
- ID: 674939
Cite item
Abstract
It follows from the observational data that during geomagnetic storms, variations of the atmospheric electric field occur. In the present paper, we present simulation results of ionospheric electric fields during the main phase of the geomagnetic storm on March 17, 2015, within the framework of a quasi-stationary model of a conductor consisting of the atmosphere and the ionosphere. For this purpose, the satellite data on the global distribution of currents between the magnetosphere and the ionosphere are used to describe the magnetospheric source of the electric field. A variation of the electric potential in the ionosphere leads to a variation of the electric field in the entire atmosphere, including its surface layer. It is important that during a geomagnetic storm, the observatory in which the atmospheric electric field is measured significantly changes its position relative to the direction of the Sun. This leads to significant changes in the ionospheric conductivity above the observatory, which affects both the ionospheric electric field and the atmospheric part of the global electrical circuit. Therefore when assessing the effect of a geomagnetic storm on the atmospheric electric field in a particular observatory, it is necessary to take into account local time when comparing measurement data with geomagnetic activity indices. For the storm of March 17–18, 2015, we found that taking into account the variations of the ionospheric electric field when calculating the atmospheric electric field allows us to reproduce the disturbances of the fair weather electric field observed at the Borok Geophysical Observatory. Based on the simulation results, it is shown that during extremely strong magnetic storms, additional atmospheric electric field variations in some places on the Earth have the same scale as the fair weather field itself.
Full Text

About the authors
S. S. Zamay
Krasnoyarsk Scientific Center SB RAS
Email: denisen@icm.krasn.ru
Russian Federation, Krasnoyarsk
V. V. Denisenko
Institute of Computational Modelling SB RAS
Author for correspondence.
Email: denisen@icm.krasn.ru
Russian Federation, Krasnoyarsk
M. V. Klimenko
West Department of Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation RAS
Email: denisen@icm.krasn.ru
Russian Federation, Kaliningrad
V. V. Klimenko
West Department of Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation RAS
Email: denisen@icm.krasn.ru
Russian Federation, Kaliningrad
S. V. Anisimov
Borok Geophysical Observatory of the Schmidt Institute of Physics of the Earth RAS
Email: denisen@icm.krasn.ru
Russian Federation, Borok, Yaroslavl
References
- Volland H. Atmospheric electrodynamics. Heidelberg: Spring, 1984.
- Shalimov S.L., Rozhnoi A.A., Solov’eva M.S., Ol’shanskaya E.V. // Phys. Solid Earth. 2019. V. 55. P. 168; https://doi.org/10.1134/S1069351319010087
- Karpov I.V., Borchevkina O.P., Vasilev P.A. // Rus. J. Phys. Chem. B 2020. V. 14. P. 362; https://doi.org/10.1134/S1990793120020220
- Leble S.B., Smirnova E.S. // Rus. J. Phys. Chem. B 2020. V. 14. P. 367; https://doi.org/10.1134/S1990793120020268
- Klimenko M.V., Ratovsky K.G., Klimenko V.V. et al. // Rus. J. Phys. Chem. B 2020. V. 15. P. 928; https://doi.org/10.1134/S1990793121050171
- Golubkov G.V., Adamson S.O. et al. // Rus. J. Phys. Chem. B 2022. V. 16. P. 508; ttps://doi.org/10.1134/S1990793122030058
- Olson D.E. // Pure Appl. Geophys. 1971. V. 84. P. 118;
- Apsen A.G., Kanonidi H.D., Chernysheva S.P., Chetaev D.N., Sheftel V.M. Magnetospheric effects in atmospheric electricity. M.: Nauka, 1988 (in Russian).
- Frank-Kamenetsky A.V., Troshichev O.A., Burns G.B., Papitashvili V.O. // J. Geophys. Res. 2001. V. 106. P. 179; https://doi.org/10.1029/2000JA900058
- Nikiforova N.N., Kleimenova N.G., Kozyreva O.V., Kubitsky M., Mikhnovsky S. // Geomagn. Aeron. 2003. V. 42. № 1. P. 32 (in Russian).
- Kleimenova N.G., Kozyreva O.V., Michnowski S., Kubicki M. // Geomagn. Aeron. 2008. V. 48. P. 622; https://doi.org/10.1134/S0016793208050071
- Smirnov S.E., Mikhailova G.A., Kapustina O.V. // Geomagn. Aeron. 2013. V. 53. P. 502; https://doi.org/10.1134/S0016793213040130
- Anisimov S.V., Shikhova N.M., Kleimenova N.G. // Geomagn. Aeron. 2021. V. 61. P. 180; https://doi.org/10.1134/S001679322102002X
- Anisimov S.V., Aphinogenov K.V., Galichenko S.V. et al. // Izvestiya, Atmosph. Oceanic Phys. 2023. V. 59. P. 522; https://doi.org/10.1134/S000143382305002X
- Richmond A.D. // J. Geomagn. Geoelectr. 1979. V. 31. P. 287. Axford W.I. // Rev. Geophys. 1969. № 1, 2. P. 421; https://doi.org/10.1029/RG007i001p₀0421
- Pudovkin M.I. // Space Sci. Rev. 1974. V. 16. P. 727;
- Gonzalez W.D., Joselyn J.A., Kamide Y. et al. // J. Geophys. Res. 1994. V. 99. № A4. P. 5771; https://doi.org/10.1029/93JA02867.
- Ratovsky K.G., Klimenko M.V., Yasyukevich Yu.V., Vesnin A.M., Klimenko V.V. // Rus. J. Phys. Chem. B 2020. V. 14. № 5. P. 862; https://doi.org/10.1134/S1990793120050243
- Milan S.E., Carter J.A., Korth H. et al. // J. Geophys. Res. Space Phys. 2015. V. 120. P. 10415; https://doi.org/10.1002/2015JA021680
- Denisenko V.V., Rycroft M.J., Harrison R.G. // Surv. Geophys. 2019. V. 40. P. 1; https://doi.org/10.1007/s10712-018-9499-6
- Bilitza D., Altadill D., Truhlik V. et al. // Space Weather. 2017. V. 15. P. 418; https://doi.org/10.1002/2016SW001593
- Alken P., Thébault E., C.D. Beggan et al. // Earth Planets Space. 2021. V. 73. P. 49; https://doi.org/10.1186/s40623-020-01288-x
- Emmert J.T., Drob D.P., Picone J.M. et al. // Earth Space Sci. 2021. V. 8. P. e2020EA001321; https://doi.org/10.1029/2020EA001321.
- Weimer D.R. // J. Geophys. Res. 1999. V. 104. P. 185.
- Denisenko V.V., Zamay S.S. // Planet. Space Sci. 1992. V. 40. P. 941.
- Burrell A.G., Chisham G., Milan S.E. et al. // Ann. Geophys. 2020. V. 38. P. 481; https://doi.org/10.5194/angeo-38-481-2020
- Denisenko V.V. // Sib. Math. J. 2002. V. 43. P. 1055.
- Denisenko V.V. Energy methods for elliptic equations with asymmetric coefficients, Novosibirsk: Publ. house RAS SB, 1995 (in Russian).
- Lunyushkin S.B. // Res. Geomagn., Aeronomy Solar Phys. 1988. V. 81. P. 181 (in Russian).
- Pustovalov K., Nagorskiy P., Oglezneva M., Smirnov S. // Atmosphere. 2022. V. 13. P. 614; https://doi.org/10.3390/atmos13040614
- Harrison R.G. // Surv. Geophys. 2013. V. 34. P. 209; https://doi.org/10.1007/s10712-012-9210-2A
- Mareev E.A. // Phys. Usp. 2010. V. 53. P. 504; https://doi.org/10.3367/UFNe.0180.201005h.0527
- Golubkov G.V., Adamson S.O. et al. // Rus. J. Phys. Chem. B 2022. V. 16. № 3. P. 508; https://doi.org/10.1134/S1990793122030058
Supplementary files
