Reaction mechanism of O₃ uptake on MgCl₂ · 6H₂O as a sea salt component

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using a coated-insert flow tube reactor coupled to mass spectrometer with molecular beam sampling, the uptake of O₃ on a salt film coating of MgCl₂·6H₂O was studied under variation in the reactant concentration ([O₃] = 2.5 ‧ 10¹³ – 1.6 ‧ 10¹⁴ cm⁻³), humidity ([RH] = 0–24%), and reactor temperatures of 254 and 295 K. The time-dependent character of the uptake coefficient g(t) = γr exp(−t/τ) was obtained, the γr and t parameters being dependent on [O₃]. Using the method of mathematical modeling, based on the shape of the dependence of the uptake coefficient on ozone concentration and its time history, the uptake mechanism was proposed and the elementary kinetic parameters were assessed, on the basis of which it is possible to extrapolate the temporal behavior of the uptake coefficient to tropospheric conditions at arbitrary ozone concentrations. Based on their obtained dependencies, at room temperature the uptake occurs according to the reaction mechanism of an adsorbed molecule on the surface of the substrate: the mechanism includes the stage of reversible adsorption, formation of an adsorbed complex followed by its unimolecular decomposition with the release of molecular chlorine into the gas phase. At low temperatures, the uptake proceeds through recombination via the Eley–Ridil’s reaction mechanism: it includes reversible adsorption, formation of a surface complex, its reaction with an ozone molecule from the gas phase followed by the release of an oxygen molecule into the gas phase. In this case, no chlorine is formed. No dependence of the uptake coefficient on relative humidity was found in the range of RH from 0 to 24% at T = 254 K.

Full Text

Restricted Access

About the authors

V. V. Zelenov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: v.zelenov48@gmail.com
Russian Federation, Moscow

E. V. Aparina

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: v.zelenov48@gmail.com
Russian Federation, Moscow

References

  1. Shinozuka Y., Clarke A.D., Howell S.G. et al. // J. Geophys. Res. 2004. V. 109. P. D24201; https://doi.org/10.1029/2004JD004975
  2. Bondy A.L., Wang B., Laskin A. et al. // Environ. Sci. Technol. 2017. V. 51. P. 9533; https://doi.org/10.1021/acs.est.7b02085
  3. Liu S., Liu C.-C., Froid K.D. et al. // PNAS. 2020. V. 118. № 9. P. e2020583118; https://doi.org/10.1073/pnas.2020583118
  4. Liao H., Chen W.-T., Seinfeld J.H. // J. Geophys. Res. 2006. V. 111. P. D12304; https://doi.org/10.1029/2005JD006852, 2006
  5. Vignati E., Facchini M.C., Rinaldi M. et al. // Atmos. Environ. 2010. V. 44. P. 670; https://doi:org/10.1016/atmosenv.2009.11.013
  6. Su B., Wang T., Zhang G. et al. // Atmos. Environ. 2022. V. 290. P. 119365; https://doi.org/10.1016/j.atmosenv.2022.119365
  7. Jaeglé L., Quinn P.K., Bates T.S. et al. // Atmos. Chem. Phys. 2011. V. 11. P. 3137; https://doi.org/10.5194/acp-11-3137-2011
  8. Quinn P.K., Coffman D.J. // J. Geophys. Res. 1998. V. 103. P. D16575; https://doi.org/10.1029/97JD03757
  9. Bates T.S., Quinn P.K., Coffman D.J. et al. // J. Geophys. Res. 2001. V. 106. P. D20767; https://doi.org/10.1029/2000JD900578
  10. Spada M., Pérez Garcia-Pando C., Janjic Z., Baldasano J.M. // Atmos. Environ. 2015. V. 101. P. 41; http://doi.org/10.1016/j.atmosenv.2014.11.019
  11. Piazzola J., Despiau S. // J. Aerosol Sci. 1997. V. 28. P. 1579; https://doi.org/10.1016/S0021-8502(97)00020-7
  12. Murphy D.M., Froyd K.D., Bian H. et al. // Atmos. Chem. Phys. 2019. V. 19. P. 4093; https://doi.org/10.5194/acp-19-4093-2019
  13. Bian H., Froyd K., Murphy D.M. et al. // Atmos. Chem. Phys. 2019. V. 19. P. 10773; https://doi.org/10.5194/acp-19-10773-2019
  14. Deuzé J.L., Herman M., Goloub P. et al. // Geophys. Res. Lett. 1999. V. 26. P. 1421; https://doi.org/10.1029/1999GL900168
  15. Feng L., Shen H., Zhu Y. et al. // Sci. Rep. 2017. V. 7. P. 41260; https://doi.org/10.1038/srep41260
  16. Nikol’skii B.P. Chemist’s Handbook. M.: Khimiya, 1966 (in Russian).
  17. Finlayson-Pitts B.J. // Chem. Rev. 2003. V. 103. P. 4801; https://doi.org/10.1021/cr020653t
  18. Rossi M.J. // Chem. Rev. 2003. V. 103. P. 4823; https://doi.org/10.1021/cr020507n
  19. Abbatt J.P.D., Waschewsky G.C.G. // J. Phys. Chem. 1998. V. 102. P. 3719; https://doi.org/10.1021/jp980932d
  20. Larin I.K., Aloyan A.E., Ermakov A.N. // Russian J. Phys. Chem. B 2021. V. 15. № 3. P. 577; https://doi.org/10.1134/S199079312103009X
  21. Sander E., Crutzen P.J. // J. Geophys. Res. 1996. V. 101. P. D9121; https://doi.org/10.1029/95JD03793
  22. Lehler E., Hönninger G., Platt U. // Atmos. Chem. Phys. 2004. V. 4. P. 2427; https://doi.org/10.5194/acp-4-2427-2004
  23. Cao L., Fan L., Li S., Yang S. // Atmos. Chem. Phys. 2022. V. 22. P. 3875; https://doi.org/10.5194/acp-22-3875-2022
  24. Womack C.C., Chace W.S., Wang S. et al. // Environ. Sci. Technol. 2023. V. 57. P. 1870; https://doi.org/10.1021/acs.est.2c05376
  25. Keene W.C., Stutz J., Pszenny A.A.P. et al. // J. Geophys. Res. 2007. V. 112. P. D10S12; https://doi.org/10.1029/2006JD007689
  26. Pechtl S., von Glasow R. // Geophys. Res. Lett. 2007. V. 34. P. L11813; https://doi.org/10.1029/2007GL029761
  27. Oum K.W., Lakin M.J., DeHaan D.O. et al. // Science. 1998. V. 279. P. 74; https://doi.org/10.1126/science279.5347.74
  28. Evstafeva E.V., Lapchenko V.A., Makarova A.S. et al. // Russ. J. Phys. Chem. B 2019. V. 13. P. 1011; https://doi.org/10.1134/S1990793119060034
  29. Shi W., Sun Q., Du P. et al. // Environ. Sci. Technol. 2020. V. 54. P. 2859; https://doi.org/10.1021/acs.est.9b05978
  30. Jacob D.J. // Atmos. Environ. 2000. V. 34. P. 2131; https://doi.org/10.1016/S1352-2310(99)00462-8
  31. Monks P.S., Archibald A.T., Colette A. et al. // Atmos. Chem. Phys. 2015. V. 15. P. 8889; https://doi.org/10.5194/acp-15-8889-2015
  32. Andersen S.T., Nelson B.S., Read K.A. et al. // Atmos. Chem. Phys. 2022. V. 22. P. 15747; https://doi.org/10.5194/acp-22-15747-2022
  33. Larin I.K. // Russian J. Phys. Chem. B 2022. V. 16. № 3. P. 492; https://doi.org/10.1134/S1990793122030083
  34. Cristofanelli P., Putero D., Bonasoni P. et al. // Atmos. Environ. 2018. V. 177. P. 54; https://doi.org/10.1016/j.atmosenv.2018.01.007
  35. Derwent R.G., Parrish D.D. // Atmos. Environ. 2022. V. 286. P. 119222; https://doi.org/10.1016/j.atmosenv.2022.119222
  36. Sun L., Xue L., Wang Y. et al. // Atmos. Chem. Phys. 2019. V. 19. P. 1455; https://doi.org/10.5194/acp-19-1455-2019
  37. Riley M.L., Watt S., Jiang N. // Atmos. Environ. 2022. V. 281. P. 119143; https://doi.org/10.1016/j.atmosenv.2022.119143
  38. Nussbaumer C., Cohen R.C. // Environ. Sci. Technol. 2020. V. 54. P. 15652; https://doi.org/10.1021/acs.est.0c04910
  39. Yusoff M.F., Latif M.T., Juneng L. et al. // Atmos. Environ. 2019. V. 207. P. 105; https://doi.org/10.1016/j.atmosenv.2019.03.023
  40. Gong C., Liao H. // Atmos. Chem. Phys. 2019. V. 19. P. 13725; https://doi.org/10.5194/acp-19-13725-2019
  41. Wang W., Yuan B., Peng Y. et al. // Atmos. Chem. Phys. 2022. V. 22. P. 4117; https://doi.org/10.5194/acp-22-4117-2022
  42. Alebic-Juretic A., Cvitas T., Klasinc L. // Environ. Monitor. Assess. 1997. V. 44. P. 241; https://doi.org/10.1023/A:1005788624410
  43. Oum K.W., Lakin M.J., Finlayson-Pitts B.J. // Geophys. Res. Lett. 1998. V. 25. P. 3923; https://doi.org/10.1029/1998GL900078
  44. Hirokawa J., Onaka K., Kajii Y., Akimoto H. // Geophys. Res. Lett. 1998. V. 25. P. 2449; https://doi.org/10.1029/98GL01815
  45. Mochida M., Hirokawa J., Akimoto H. // Geophys. Res. Lett. 2000. V. 27. P. 2629; https://doi.org/10.1029/1999GL010927
  46. Sadanaga Y., Hirokawa J., Akimoto H. // Geophys. Res. Lett. 2001. V. 28. P. 4433; https://doi.org/10.1029/2001GL013722
  47. Zelenov V.V., Aparina E.V., Chudinov A.V., Kashtanov S.A. // Russian J. Phys. Chem. B 2010. V. 4. № 3. P. 399; https://doi.org/10.1134/S1990793110030061
  48. Zelenov V.V., Aparina E.V. // Russian J. Phys. Chem. B 2023. V. 17. № 1. P. 234; https://doi.org/10.1134/S1990793123010141
  49. Laidler K.J. Chemical kinetics. 2nd ed. New York: McGraw-Hill, 1965.
  50. Utter R.G., Burkholder J.B., Howard C.J., Ravishankara A.R. // J. Phys. Chem. 1992. V. 96. P. 4973; https://doi.org/10.1021/j100191a045
  51. Moreno C., Baeza-Romero M.T. // Phys. Chem. Chem. Phys. 2019. V. 21. P. 19835; https://doi.org/10.1039/c9cpo3430g
  52. Ivliev L.S. Chemical Composition and Structure of Atmospheric Aerosols. Leningr. Gos. Univ., Leningrad, 1982 (in Russian).
  53. Brasseur G., Solomon S. Aeronomy of the Middle Atmosphere. 3rd ed. Dordrecht, Netherlands: Springer, 2005.
  54. Kolb C.E., Cox R.A., Abbatt J.P.D., Ammann M., Davis E.J. et al. // Atmos. Chem. Phys. 2010. V. 10. P. 10561; https://doi.org/10.5194/acp-10-10561-2010
  55. Zelenov V.V., Aparina E.V. // Russian J. Phys. Chem. B 2021. V. 15. № 5. P. 919; https://doi.org/10.1134/S199079312050225

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Change in the concentration of the O₃ reagent in the reactor upon introduction of a movable rod coated with MgCl₂ 6H₂O. O₃ capture conditions: [O₃] = 8 10¹³ cm⁻³, T = 295 K, pressure p = 5 Torr, ΔL = 30 cm, average helium flow velocity u = 45 cm s⁻¹. Light symbols – measured O₃ concentration upon periodic removal of the coated rod from the contact zone; dark symbols – O₃ concentration with the rod introduced into the reaction zone.

Download (97KB)
3. Fig. 2. Time-dependent O₃ capture coefficient (symbols), calculated from the data in Fig. 1 using formula (1); the solid curve is an approximation using formula (2) with the parameters from Table 1.

Download (72KB)
4. Fig. 3. Dependence of the parameter γᵣ of time-dependent O₃ capture on the MgCl₂ 6H₂O coating at T = 295 K on [O₃]: symbols are experimental data from Table 1, solid line is approximation by formula (3) with parameters γᵣ,ₘₐₓ and KL from Table 3.

Download (60KB)
5. Fig. 4. Dependence of the parameter τ⁻¹ of time-dependent O₃ capture on a MgCl₂ 6H₂O coating at T = 295 K on [O₃]: symbols are experimental data from Table 1, the solid line is an approximation using formula (4) with parameters KL and kᵣ from Table 3.

Download (61KB)
6. Fig. 5. Dependence of the parameter γᵣ of time-dependent O₃ capture on the MgCl₂ 6H₂O coating at T = 254 K on [O₃]: symbols are experimental data from Table 2, the solid line is an approximation using formula (6) with parameters γᵣ,ₘₐₓ and KL from Table 3.

Download (60KB)
7. Fig. 6. Dependence of the parameter τ⁻¹ of time-dependent O₃ capture on a coating of MgCl₂ 6H₂O at T = 254 K on [O₃]: symbols are experimental data from Table 2, solid line is approximation by formula (7) with parameters KL and kᵣ from Table 3

Download (57KB)

Copyright (c) 2024 Russian Academy of Sciences