Reaction mechanism of O₃ uptake on MgCl₂ · 6H₂O as a sea salt component
- Authors: Zelenov V.V.1, Aparina E.V.1
-
Affiliations:
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
- Issue: Vol 43, No 6 (2024)
- Pages: 53-63
- Section: Химическая физика атмосферных явлений
- URL: https://cijournal.ru/0207-401X/article/view/674936
- DOI: https://doi.org/10.31857/S0207401X24060069
- ID: 674936
Cite item
Abstract
Using a coated-insert flow tube reactor coupled to mass spectrometer with molecular beam sampling, the uptake of O₃ on a salt film coating of MgCl₂·6H₂O was studied under variation in the reactant concentration ([O₃] = 2.5 ‧ 10¹³ – 1.6 ‧ 10¹⁴ cm⁻³), humidity ([RH] = 0–24%), and reactor temperatures of 254 and 295 K. The time-dependent character of the uptake coefficient g(t) = γr exp(−t/τ) was obtained, the γr and t parameters being dependent on [O₃]. Using the method of mathematical modeling, based on the shape of the dependence of the uptake coefficient on ozone concentration and its time history, the uptake mechanism was proposed and the elementary kinetic parameters were assessed, on the basis of which it is possible to extrapolate the temporal behavior of the uptake coefficient to tropospheric conditions at arbitrary ozone concentrations. Based on their obtained dependencies, at room temperature the uptake occurs according to the reaction mechanism of an adsorbed molecule on the surface of the substrate: the mechanism includes the stage of reversible adsorption, formation of an adsorbed complex followed by its unimolecular decomposition with the release of molecular chlorine into the gas phase. At low temperatures, the uptake proceeds through recombination via the Eley–Ridil’s reaction mechanism: it includes reversible adsorption, formation of a surface complex, its reaction with an ozone molecule from the gas phase followed by the release of an oxygen molecule into the gas phase. In this case, no chlorine is formed. No dependence of the uptake coefficient on relative humidity was found in the range of RH from 0 to 24% at T = 254 K.
Full Text

About the authors
V. V. Zelenov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Author for correspondence.
Email: v.zelenov48@gmail.com
Russian Federation, Moscow
E. V. Aparina
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: v.zelenov48@gmail.com
Russian Federation, Moscow
References
- Shinozuka Y., Clarke A.D., Howell S.G. et al. // J. Geophys. Res. 2004. V. 109. P. D24201; https://doi.org/10.1029/2004JD004975
- Bondy A.L., Wang B., Laskin A. et al. // Environ. Sci. Technol. 2017. V. 51. P. 9533; https://doi.org/10.1021/acs.est.7b02085
- Liu S., Liu C.-C., Froid K.D. et al. // PNAS. 2020. V. 118. № 9. P. e2020583118; https://doi.org/10.1073/pnas.2020583118
- Liao H., Chen W.-T., Seinfeld J.H. // J. Geophys. Res. 2006. V. 111. P. D12304; https://doi.org/10.1029/2005JD006852, 2006
- Vignati E., Facchini M.C., Rinaldi M. et al. // Atmos. Environ. 2010. V. 44. P. 670; https://doi:org/10.1016/atmosenv.2009.11.013
- Su B., Wang T., Zhang G. et al. // Atmos. Environ. 2022. V. 290. P. 119365; https://doi.org/10.1016/j.atmosenv.2022.119365
- Jaeglé L., Quinn P.K., Bates T.S. et al. // Atmos. Chem. Phys. 2011. V. 11. P. 3137; https://doi.org/10.5194/acp-11-3137-2011
- Quinn P.K., Coffman D.J. // J. Geophys. Res. 1998. V. 103. P. D16575; https://doi.org/10.1029/97JD03757
- Bates T.S., Quinn P.K., Coffman D.J. et al. // J. Geophys. Res. 2001. V. 106. P. D20767; https://doi.org/10.1029/2000JD900578
- Spada M., Pérez Garcia-Pando C., Janjic Z., Baldasano J.M. // Atmos. Environ. 2015. V. 101. P. 41; http://doi.org/10.1016/j.atmosenv.2014.11.019
- Piazzola J., Despiau S. // J. Aerosol Sci. 1997. V. 28. P. 1579; https://doi.org/10.1016/S0021-8502(97)00020-7
- Murphy D.M., Froyd K.D., Bian H. et al. // Atmos. Chem. Phys. 2019. V. 19. P. 4093; https://doi.org/10.5194/acp-19-4093-2019
- Bian H., Froyd K., Murphy D.M. et al. // Atmos. Chem. Phys. 2019. V. 19. P. 10773; https://doi.org/10.5194/acp-19-10773-2019
- Deuzé J.L., Herman M., Goloub P. et al. // Geophys. Res. Lett. 1999. V. 26. P. 1421; https://doi.org/10.1029/1999GL900168
- Feng L., Shen H., Zhu Y. et al. // Sci. Rep. 2017. V. 7. P. 41260; https://doi.org/10.1038/srep41260
- Nikol’skii B.P. Chemist’s Handbook. M.: Khimiya, 1966 (in Russian).
- Finlayson-Pitts B.J. // Chem. Rev. 2003. V. 103. P. 4801; https://doi.org/10.1021/cr020653t
- Rossi M.J. // Chem. Rev. 2003. V. 103. P. 4823; https://doi.org/10.1021/cr020507n
- Abbatt J.P.D., Waschewsky G.C.G. // J. Phys. Chem. 1998. V. 102. P. 3719; https://doi.org/10.1021/jp980932d
- Larin I.K., Aloyan A.E., Ermakov A.N. // Russian J. Phys. Chem. B 2021. V. 15. № 3. P. 577; https://doi.org/10.1134/S199079312103009X
- Sander E., Crutzen P.J. // J. Geophys. Res. 1996. V. 101. P. D9121; https://doi.org/10.1029/95JD03793
- Lehler E., Hönninger G., Platt U. // Atmos. Chem. Phys. 2004. V. 4. P. 2427; https://doi.org/10.5194/acp-4-2427-2004
- Cao L., Fan L., Li S., Yang S. // Atmos. Chem. Phys. 2022. V. 22. P. 3875; https://doi.org/10.5194/acp-22-3875-2022
- Womack C.C., Chace W.S., Wang S. et al. // Environ. Sci. Technol. 2023. V. 57. P. 1870; https://doi.org/10.1021/acs.est.2c05376
- Keene W.C., Stutz J., Pszenny A.A.P. et al. // J. Geophys. Res. 2007. V. 112. P. D10S12; https://doi.org/10.1029/2006JD007689
- Pechtl S., von Glasow R. // Geophys. Res. Lett. 2007. V. 34. P. L11813; https://doi.org/10.1029/2007GL029761
- Oum K.W., Lakin M.J., DeHaan D.O. et al. // Science. 1998. V. 279. P. 74; https://doi.org/10.1126/science279.5347.74
- Evstafeva E.V., Lapchenko V.A., Makarova A.S. et al. // Russ. J. Phys. Chem. B 2019. V. 13. P. 1011; https://doi.org/10.1134/S1990793119060034
- Shi W., Sun Q., Du P. et al. // Environ. Sci. Technol. 2020. V. 54. P. 2859; https://doi.org/10.1021/acs.est.9b05978
- Jacob D.J. // Atmos. Environ. 2000. V. 34. P. 2131; https://doi.org/10.1016/S1352-2310(99)00462-8
- Monks P.S., Archibald A.T., Colette A. et al. // Atmos. Chem. Phys. 2015. V. 15. P. 8889; https://doi.org/10.5194/acp-15-8889-2015
- Andersen S.T., Nelson B.S., Read K.A. et al. // Atmos. Chem. Phys. 2022. V. 22. P. 15747; https://doi.org/10.5194/acp-22-15747-2022
- Larin I.K. // Russian J. Phys. Chem. B 2022. V. 16. № 3. P. 492; https://doi.org/10.1134/S1990793122030083
- Cristofanelli P., Putero D., Bonasoni P. et al. // Atmos. Environ. 2018. V. 177. P. 54; https://doi.org/10.1016/j.atmosenv.2018.01.007
- Derwent R.G., Parrish D.D. // Atmos. Environ. 2022. V. 286. P. 119222; https://doi.org/10.1016/j.atmosenv.2022.119222
- Sun L., Xue L., Wang Y. et al. // Atmos. Chem. Phys. 2019. V. 19. P. 1455; https://doi.org/10.5194/acp-19-1455-2019
- Riley M.L., Watt S., Jiang N. // Atmos. Environ. 2022. V. 281. P. 119143; https://doi.org/10.1016/j.atmosenv.2022.119143
- Nussbaumer C., Cohen R.C. // Environ. Sci. Technol. 2020. V. 54. P. 15652; https://doi.org/10.1021/acs.est.0c04910
- Yusoff M.F., Latif M.T., Juneng L. et al. // Atmos. Environ. 2019. V. 207. P. 105; https://doi.org/10.1016/j.atmosenv.2019.03.023
- Gong C., Liao H. // Atmos. Chem. Phys. 2019. V. 19. P. 13725; https://doi.org/10.5194/acp-19-13725-2019
- Wang W., Yuan B., Peng Y. et al. // Atmos. Chem. Phys. 2022. V. 22. P. 4117; https://doi.org/10.5194/acp-22-4117-2022
- Alebic-Juretic A., Cvitas T., Klasinc L. // Environ. Monitor. Assess. 1997. V. 44. P. 241; https://doi.org/10.1023/A:1005788624410
- Oum K.W., Lakin M.J., Finlayson-Pitts B.J. // Geophys. Res. Lett. 1998. V. 25. P. 3923; https://doi.org/10.1029/1998GL900078
- Hirokawa J., Onaka K., Kajii Y., Akimoto H. // Geophys. Res. Lett. 1998. V. 25. P. 2449; https://doi.org/10.1029/98GL01815
- Mochida M., Hirokawa J., Akimoto H. // Geophys. Res. Lett. 2000. V. 27. P. 2629; https://doi.org/10.1029/1999GL010927
- Sadanaga Y., Hirokawa J., Akimoto H. // Geophys. Res. Lett. 2001. V. 28. P. 4433; https://doi.org/10.1029/2001GL013722
- Zelenov V.V., Aparina E.V., Chudinov A.V., Kashtanov S.A. // Russian J. Phys. Chem. B 2010. V. 4. № 3. P. 399; https://doi.org/10.1134/S1990793110030061
- Zelenov V.V., Aparina E.V. // Russian J. Phys. Chem. B 2023. V. 17. № 1. P. 234; https://doi.org/10.1134/S1990793123010141
- Laidler K.J. Chemical kinetics. 2nd ed. New York: McGraw-Hill, 1965.
- Utter R.G., Burkholder J.B., Howard C.J., Ravishankara A.R. // J. Phys. Chem. 1992. V. 96. P. 4973; https://doi.org/10.1021/j100191a045
- Moreno C., Baeza-Romero M.T. // Phys. Chem. Chem. Phys. 2019. V. 21. P. 19835; https://doi.org/10.1039/c9cpo3430g
- Ivliev L.S. Chemical Composition and Structure of Atmospheric Aerosols. Leningr. Gos. Univ., Leningrad, 1982 (in Russian).
- Brasseur G., Solomon S. Aeronomy of the Middle Atmosphere. 3rd ed. Dordrecht, Netherlands: Springer, 2005.
- Kolb C.E., Cox R.A., Abbatt J.P.D., Ammann M., Davis E.J. et al. // Atmos. Chem. Phys. 2010. V. 10. P. 10561; https://doi.org/10.5194/acp-10-10561-2010
- Zelenov V.V., Aparina E.V. // Russian J. Phys. Chem. B 2021. V. 15. № 5. P. 919; https://doi.org/10.1134/S199079312050225
Supplementary files
