Porous polymer compositions based on mixed colloidal suspensions under ultrasonic dispersion and microwave heating

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A new method for mixing solutions and suspensions containing thermodynamically immiscible dispersion media based on the use of ultrasonic dispersion and thermally stimulated microwave heating has been proposed. The results of a study of a number of functional composites obtained by mixing solutions of biodegradable polymers in chloroform with aqueous suspensions of natural polymers are presented. The possibility of obtaining polymer composites doped with magnetic nanoparticles and drugs by this method is considered. It has been established that the proposed method of mixing makes it possible to combine suspensions of polymers of different nature in the composition of composites suitable for creating porous, hygroscopic and magnetically controlled materials for biomedical and environmental applications.

Full Text

Restricted Access

About the authors

V. N. Gorshenev

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: lina.invers@gmail.com
Russian Federation, Moscow

I. A. Maklakova

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: lina.invers@gmail.com
Russian Federation, Москва

M. A. Yakovleva

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: lina.invers@gmail.com
Russian Federation, Moscow

References

  1. S.A. Galema, Chemical Society Reviews. 26(3), 233 (1997). https://doi.org/10.1039/CS9972600233
  2. M.B. Gawande, S.N. Shelke, R. Zboril, R.S. Varma, Accounts of Chemical Research. 47(4), 1338 (2014). https://doi.org/10.1021/ar400309b
  3. I.V. Kubrakova, Successes of Chemistry. 71(4), 327 (2002). https://doi.org/10.1070/RC2002v071n04ABEH000699
  4. R.A. Abramovich, Org. Prep. Proced. Int. 23, 685 (1991).
  5. O.V. Gradov, M.A. Gradova, Chemosensors. 7(4), 48 (2019). https://doi.org/10.3390/chemosensors7040048
  6. D. Bogdal, A. Prociak, S. Michalowski, Current Organic Chemistry. 15(2), 178 (2011). https://doi.org/10.2174/138527211793979835
  7. D. Bogdal, S. Bednarz, K. Matras-Postolek, Advances in Polymer Science. 274, 241–294 (2015). https://doi.org/10.1007/12_2014_296
  8. V.N. Gorshenev, Russian Journal of Physical Chemistry B. 13 (1), 165–169 (2019). https://doi.org/10.1134/S1990793119010214/
  9. V.N. Gorshenev, A.T. Teleshev, Yu.A. Ershov, et al., Method of obtaining a porous bone biocomposite // Patent RF: 2482880. 2013.
  10. V.N. Gorshenev, Yu.A. Ershov, A.T. Teleshev, et al., Medical Technique. 1(283), 30 (2014).
  11. I.A. Maklakova, O.V. Gradov, M.A. Gradova, P.L. Aleksandrov, Key Engineering Materials. 899, 660 (2021). https://doi.org/10.4028/www.scientific.net/KEM.899.660
  12. O.V. Gradov, P.L. Alexandrov, M.A. Gradova, Program systems and computational methods. 4, 125 (2019). http://doi.org/10.7256/2454-0714.0.0.31379
  13. M.A. Yakovleva, V.N. Gorshenev, A.E. Dontsov, A.A. Olkhov, Technologies of living systems. 19(4), 5 (2022). https://doi.org/10.18127/j20700997-202204-05
  14. M. Porȩbska-Budny, N.L. Sakina, K.B. Stȩpień, A.E. Dontsov, T. Wilczok, Biochimica et Biophysica Acta (BBA)-General Subjects. 1116(1), 11 (1992). https://doi.org/10.1016/0304-4165(92)90121-a
  15. Yu.O. Teselkin, I.V. Babenkova, O.B. Lyubitsky, G.I. Klebanov, Yu.A. Vladimirov, Questions of Medical Chemistry. 44(1), 70 (1998).
  16. V.N. Gorshenev, O.V. Gradov, M.A. Gradova, Genes and cells. 14(S1), 68 (2019). https://doi.org/10.23868/gc122415
  17. V.N. Gorshenev, A.A. Olkhov, O.V. Gradov, M.A. Gradova, P.L. Alexandrov, Genes and cells. 14(S1), 69 (2019). https://doi.org/10.23868/gc122418
  18. I.V. Klimenko, A.V. Lobanov, Russian Journal of Physical Chemistry B 12(1), 10 (2018). http://doi.org/10.1134/S1990793118010074
  19. I.V. Klimenko, M.A. Gradova, O.V. Gradov, S.B. Bibikov, A.V. Lobanov, Russian Journal of Physical Chemistry B 14(3), 436 (2020). http://doi.org/10.1134/s1990793120030070
  20. V.V. Kochervinskii, M.A. Gradova, O.V. Gradov, et al., Nanomaterials. 13(3), 564 (2023). https://doi.org/10.3390/nano13030564
  21. A.L. Kovarsky, O.N. Sorokina, V.N. Gorshenev, A.P. Tikhonov, Journal of Physical Chemistry. 81 (2), 364 (2007).
  22. V.V. Kochervinskii, O.V. Gradov, M.A. Gradova, Russian Chemical Reviews. 91(11), RCR5037 (2022).
  23. N.A. Spaldin, R. Ramesh, Nature Materials. 18(3), 203 (2019). https://doi.org/10.1038/s41563-018-0275-2
  24. T. Lottermoser, D. Meier, Physical Sciences Reviews. 6 (2), 20200032 (2020). https://doi.org/10.1515/psr-2020-0032
  25. P.D. Prasad, J. Hemalatha, Materials Research Express. 6 (9), 094007 (2019).
  26. S. Newacheck, A. Singh, G. Youssef, Smart Materials and Structures. V. 31(1), 015022 (2021).
  27. H. Palneedi, V. Annapureddy, S. Priya, J. Ryu, Actuators. 5 (1), 9 (2016). https://doi.org/10.3390/act5010009
  28. J.S. Andrew, J.D. Starr, M.A. Budi, Scripta Materialia. 74, 38 (2014). https://doi.org/10.1016/j.scriptamat.2013.09.023
  29. X. Lv, J. Liu, J. Zhao, M. Wang, Z. Pan, Journal of Alloys and Compounds. 918, 165772 (2022). https://doi.org/10.1016/j.jallcom.2022.165772
  30. A.M. Zhukov, V.I. Solodilov, I.V. Tretyakov, E.A. Burakova, G.Yu. Yurkov, Russian Journal of Physical Chemistry B. 16 (5), 926 (2022). https://doi.org/10.1134/S199079312205013X
  31. M.I. Alymov, B.S. Seplyarskii, S.G. Vadchenko, V.A. Zelensky, N.M. Rubtsov, R.A. Kochetkov, A.S. Shchukin, I.D. Kovalev, Russian Journal of Physical Chemistry B. 15(2), 352 (2021). https://doi.org/10.1134/S1990793121020135
  32. I.G. Kalinina, V.B. Ivanov, S.A. Semenov, V.V. Kazarin, O.A. Zhdanova, Russian Journal of Physical Chemistry B. 15 (3), 506 (2021). http://doi.org/10.1134/S1990793121030210
  33. V.Ya. Krivnov, D.V. Dmitriev, Russian Journal of Physical Chemistry B. 15(1), 89 (2021). https://doi.org/10.1134/S199079312101022X

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Porous sample of collagen/hydroxyapatite composite obtained using the first scheme of liquid phase removal.

Download (132KB)
3. Fig. 2. Micrographs of samples formed on the water surface as a result of microwave heating of suspensions: a – sample of PHB fibers, b – sample of PHB fibers doped with dye (tetraphenylporphyrin).

Download (304KB)
4. Fig. 3. a – Absorption spectra of chlorin on the second day of incubation of polymer composite samples; b – dependence of chlorin release from composite samples on incubation time in a buffer solution at a temperature of 37 °C; 1 – sample PCL + PVP + chlorin, 2 – sample PLA + PVP + chlorin.

Download (109KB)
5. Fig. 4. a – External appearance of a foamed sample of copolymer F-62 after drying, b – electron micrograph of a section of a copolymer sample.

Download (206KB)
6. Fig. 5. Electron micrographs of samples of the initial copolymer F-62 (a, b) and its composite with magnetic particles (c, d) after microwave treatment.

Download (599KB)
7. Fig. 6. Samples of PAG composite with fluoroplastic: a – gel after swelling in a solution of cobalt chloride, b – sample after placement in a solution of NaBH4.

Download (350KB)

Copyright (c) 2024 Russian Academy of Sciences