Conductive and convective combustion modes of granular mixtures of Ti–C–NiCr
- Authors: Seplyarskii B.S.1, Kochetkov R.A.1, Lisina T.G.1, Abzalov N.I.1
-
Affiliations:
- Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences
- Issue: Vol 43, No 7 (2024)
- Pages: 56-72
- Section: Combustion, explosion and shock waves
- URL: https://cijournal.ru/0207-401X/article/view/674925
- DOI: https://doi.org/10.31857/S0207401X24070068
- ID: 674925
Cite item
Abstract
The combustion modes of powder and granular mixtures (100 – X)(Ti + C) + XNiCr (X = 0–30%) containing Ti powders of different dispersion with different amounts of impurity gases in them were investigated. The experimental setup provided filtration of impurity gases released during combustion in the cocurrent direction or through the side surface of the sample. The difference between the experimental burning velocities of powder mixtures with titanium of different fineness is explained using a convective-conductive combustion model. For granular mixtures based on Ti powder with a characteristic size of 120 μm, it was shown that combustion occurs in the conductive mode. Comparison of the combustion velocities of granular mixtures containing Ti powder with particles of a characteristic size of 60 μm in the absence and presence of gas filtration through the sample indicates the transition of combustion to the convective regime. The necessary and sufficient conditions for the transition from conductive to convective combustion are formulated, which makes it possible to determine the composition of the mixture whose combustion occurs in the boundary region. In mixtures based on Ti with a particle size of 60 μm, the conductive combustion regime is observed during the combustion of granules 0.6 mm in size and a mixture with X = 30% of granules 1.7 mm in size. For mixtures with X = 0–20% with granules 1.7 mm in size, burning in the convective regime, the interfacial heat transfer coefficients were evaluated using experimental data. Their values are more than an order of magnitude higher than the theoretical ones. The XPA results of the combustion products showed that in order to obtain synthesis products without side phases of intermetallic compounds, it is necessary to use finely dispersed titanium powder.
Full Text

About the authors
B. S. Seplyarskii
Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences
Author for correspondence.
Email: seplb1@mail.ru
Russian Federation, Chernogolovka
R. A. Kochetkov
Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences
Email: seplb1@mail.ru
Russian Federation, Chernogolovka
T. G. Lisina
Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences
Email: seplb1@mail.ru
Russian Federation, Chernogolovka
N. I. Abzalov
Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences
Email: seplb1@mail.ru
Russian Federation, Chernogolovka
References
- Y. Liu, B.H. Yu, D.H. Guan, Z.B. Wang and J. Bi, J. Mat. Sci. Lett. 20, 619 (2001). https://doi.org/10.1023/A:1010965216385
- A.E. Chesnokov, A.A. Filippov, J. Appl. Mech. Tech. Phys. 63, 329 (2022). https://doi.org/10.1134/S002189442202016
- G. Bolelli, A. Colella, L. Lusvarghi, S. Morelli, P. Puddu, E. Righetti, P. Sassatelli and V. Testa, Wear 450–451, 203273 (2020). https://doi.org/10.1016/j.wear.2020.203273
- P.V. Kiryukhantsev-Korneev, A.D. Sytchenko and E.A. Levashov, Russ. J. Nonferrous Met. 60, 662 (2019). https://doi.org/10.3103/S1067821219060099
- W. Zhang, M.L. Sui, Y.Z. Zhou et al., J. Mater. Res. 18, 1543 (2003). https://doi.org/10.1557/JMR.2003.0213
- A.L. Borisova, Y.S. Borisov, Powder Metall. Met. Ceram. 47, 80 (2008). https://doi.org/10.1007/s11106-008-0012-5
- O. P. Solonenko, V.E. Ovcharenko, V. Yu. Ulianitsky et al., J. Surf. Invest. X-ray, Synchrotron and Neutron Techniques, 10 (5), 1040 (2016). https://doi.org/10.1134/S1027451016050402
- C. Bartuli, R.W. Smith, E. Shtessel, Ceram. Int., 23, 61 (1997).
- B.S. Seplyarsky, R.A. Kochetkov, T.G. Lisina, et al. Inorg. Mater. 55 (11), 1104 (2019). https://doi.org/10.1134/S0020168519110116
- B.S. Seplyarskii, R.A. Kochetkov, T.G. Lisina, et al., Int. J. Self-Propag. High-Temp. Synth. 31 (4), 195 (2022). https://doi.org/10.3103/S1061386222040100
- B.S. Seplyarskii, N.I. Abzalov, R.A. Kochetkov, and T.G. Lisina, Rus. J. Phys. Chem. B 15 (2), 242 (2021). https://doi.org/10.1134/S199079312102010X
- B. S. Seplyarskii, R.A. Kochetkov, T.G. Lisina, and M.A. Alymov, IOP Conf. Series: Mater. Sci. Eng. 558, 012045 (2019). https://doi.org/10.1088/1757-899X/558/1/012045
- S.V. Kostin, P.M. Krishenik and S.A. Rogachev, Rus. J. Phys. Chem. B 15, 68 (2021). https://doi.org/10.1134/S1990793121010073
- S.A. Rogachev, K.G. Shkadinskii and P.M. Krishenik, Rus. J. Phys. Chem. B 16, 680 (2022). https://doi.org/10.1134/S1990793122020099
- А.А. Belyaev and B.S. Ermolaev, Rus. J. Phys. Chem. B 17, 915 (2023). https://doi.org/10.1134/S199079312304022X
- B.S. Seplyarskii, Dokl. Phys. Chem. 396 (4-6), 130 (2004). https://doi.org/10.1023/B:DOPC.0000033505.34075.0a
- T.S. Azatyan, V.M. Mal’tsev, A.G. Merzhanov, V.A. Seleznev, Combust. Explos. Shock Waves 13 (2), 156 (1977). https://doi.org/10.1007/BF00754993
- B.S. Seplyarskii, R.A. Kochetkov, T.G. Lisina, N.M. Rubtsov, and N.I. Abzalov, Combust. and Flame 236, 111811 (2022). https://doi.org/10.1016/j.combustflame.2021.111811
- A.A. Zenin, A.G. Merzhanov, G.A. Nersisyan, Combust. Explos. Shock Waves 17 (1), 63 (1981). https://doi.org/10.1007/BF00772787
- I. A. Korol’chenko, A. V. Kazakov, A. S. Kukhtin, and V. L. Krylov, Pozharovzryvobezopasnost’ Veshch. Mater. 13 (4), 36 (2004) (in Russian).
- B.S. Seplyarskii, R.A. Kochetkov, Int. J Self-Propag. High-Temp. Synth. 17 (2), 134 (2017). https://doi.org/10.3103/S106138621702011X
- T. Slezak, J. Zmywaczyk, P. Koniorczyk, 21AIP Conf. Proc. 2170 (2019). https://doi.org/10.1063/1.5132738
- N.A. Martirosyan, S.K. Dolukhanyan and A.G. Merzhanov, Combust. Explos. Shock Waves. 17 (4), 369 (1981). https://doi.org/10.1007/BF00761202
- B.S. Seplyarskii, R.A. Kochetkov, T.G. Lisina, and N.I. Abzalov, Combust. Explos. Shock Waves 57 (3), 334 (2021). https://doi.org/10.1134/S0010508221030084
- A. V. Lykov, The Theory of Heat Conductivity (Мoscow: Vyssh.Shkola, 1967) (in Russian).
- A.S. Mukas’yan, V.A. Shugaev, and N.V. Kir’yakov, Combust. Explos. Shock Waves 29 (1), 7 (1993). https://doi.org/10.1007/BF00755319
- A. P. Aldushin and A. G. Merzhanov, In: Theory of filtration combustion: overview and status of research (Novosibirsk: Nauka, 1988) (in Russian).
- V. E. Zinov’ev, Thermophysical Properties of Metals at High Temperatures (Moscow: Metallurgiya, 1989) (in Russian).
- Yu.V. Sheludyak, L.Ya. Kashporov, L.A. Malinin, V.N. Tsalkov, Thermophysical properties of components of combustible systems (Moscow, 1992) (in Russian).
- L.N. Larikov, Yu.F. Yurchenko, Structure and properties of metals and alloys (Kiev, Naukova Dumka, 1985) (in Russian).
- M.A. Goldshtik, Transfer processes in granular laуer (Novosibirsk: Institute of Thermophysics of the Siberian Branch of the USSR Acad. Science, 1984) (in Russian).
- L.K. Gusachenko, V.E. Zarko, A.D. Rychkov, et al., Combust. Explos. Shock Waves 39 (6), 694 (2003). https://doi.org/10.1023/B:CESW.0000007683.81353.91
- N.G. Kasatskii, V.V. Filatov, and Yu.S. Naiborodenko, In: Self-propagating High-Temperature Synthesis (Tomsk: Tomsk Univ., 1991) (in Russian).
Supplementary files
