Conductive and convective combustion modes of granular mixtures of Ti–C–NiCr

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The combustion modes of powder and granular mixtures (100 – X)(Ti + C) + XNiCr (X = 0–30%) containing Ti powders of different dispersion with different amounts of impurity gases in them were investigated. The experimental setup provided filtration of impurity gases released during combustion in the cocurrent direction or through the side surface of the sample. The difference between the experimental burning velocities of powder mixtures with titanium of different fineness is explained using a convective-conductive combustion model. For granular mixtures based on Ti powder with a characteristic size of 120 μm, it was shown that combustion occurs in the conductive mode. Comparison of the combustion velocities of granular mixtures containing Ti powder with particles of a characteristic size of 60 μm in the absence and presence of gas filtration through the sample indicates the transition of combustion to the convective regime. The necessary and sufficient conditions for the transition from conductive to convective combustion are formulated, which makes it possible to determine the composition of the mixture whose combustion occurs in the boundary region. In mixtures based on Ti with a particle size of 60 μm, the conductive combustion regime is observed during the combustion of granules 0.6 mm in size and a mixture with X = 30% of granules 1.7 mm in size. For mixtures with X = 0–20% with granules 1.7 mm in size, burning in the convective regime, the interfacial heat transfer coefficients were evaluated using experimental data. Their values are more than an order of magnitude higher than the theoretical ones. The XPA results of the combustion products showed that in order to obtain synthesis products without side phases of intermetallic compounds, it is necessary to use finely dispersed titanium powder.

Full Text

Restricted Access

About the authors

B. S. Seplyarskii

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Author for correspondence.
Email: seplb1@mail.ru
Russian Federation, Chernogolovka

R. A. Kochetkov

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Email: seplb1@mail.ru
Russian Federation, Chernogolovka

T. G. Lisina

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Email: seplb1@mail.ru
Russian Federation, Chernogolovka

N. I. Abzalov

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Email: seplb1@mail.ru
Russian Federation, Chernogolovka

References

  1. Y. Liu, B.H. Yu, D.H. Guan, Z.B. Wang and J. Bi, J. Mat. Sci. Lett. 20, 619 (2001). https://doi.org/10.1023/A:1010965216385
  2. A.E. Chesnokov, A.A. Filippov, J. Appl. Mech. Tech. Phys. 63, 329 (2022). https://doi.org/10.1134/S002189442202016
  3. G. Bolelli, A. Colella, L. Lusvarghi, S. Morelli, P. Puddu, E. Righetti, P. Sassatelli and V. Testa, Wear 450–451, 203273 (2020). https://doi.org/10.1016/j.wear.2020.203273
  4. P.V. Kiryukhantsev-Korneev, A.D. Sytchenko and E.A. Levashov, Russ. J. Nonferrous Met. 60, 662 (2019). https://doi.org/10.3103/S1067821219060099
  5. W. Zhang, M.L. Sui, Y.Z. Zhou et al., J. Mater. Res. 18, 1543 (2003). https://doi.org/10.1557/JMR.2003.0213
  6. A.L. Borisova, Y.S. Borisov, Powder Metall. Met. Ceram. 47, 80 (2008). https://doi.org/10.1007/s11106-008-0012-5
  7. O. P. Solonenko, V.E. Ovcharenko, V. Yu. Ulianitsky et al., J. Surf. Invest. X-ray, Synchrotron and Neutron Techniques, 10 (5), 1040 (2016). https://doi.org/10.1134/S1027451016050402
  8. C. Bartuli, R.W. Smith, E. Shtessel, Ceram. Int., 23, 61 (1997).
  9. B.S. Seplyarsky, R.A. Kochetkov, T.G. Lisina, et al. Inorg. Mater. 55 (11), 1104 (2019). https://doi.org/10.1134/S0020168519110116
  10. B.S. Seplyarskii, R.A. Kochetkov, T.G. Lisina, et al., Int. J. Self-Propag. High-Temp. Synth. 31 (4), 195 (2022). https://doi.org/10.3103/S1061386222040100
  11. B.S. Seplyarskii, N.I. Abzalov, R.A. Kochetkov, and T.G. Lisina, Rus. J. Phys. Chem. B 15 (2), 242 (2021). https://doi.org/10.1134/S199079312102010X
  12. B. S. Seplyarskii, R.A. Kochetkov, T.G. Lisina, and M.A. Alymov, IOP Conf. Series: Mater. Sci. Eng. 558, 012045 (2019). https://doi.org/10.1088/1757-899X/558/1/012045
  13. S.V. Kostin, P.M. Krishenik and S.A. Rogachev, Rus. J. Phys. Chem. B 15, 68 (2021). https://doi.org/10.1134/S1990793121010073
  14. S.A. Rogachev, K.G. Shkadinskii and P.M. Krishenik, Rus. J. Phys. Chem. B 16, 680 (2022). https://doi.org/10.1134/S1990793122020099
  15. А.А. Belyaev and B.S. Ermolaev, Rus. J. Phys. Chem. B 17, 915 (2023). https://doi.org/10.1134/S199079312304022X
  16. B.S. Seplyarskii, Dokl. Phys. Chem. 396 (4-6), 130 (2004). https://doi.org/10.1023/B:DOPC.0000033505.34075.0a
  17. T.S. Azatyan, V.M. Mal’tsev, A.G. Merzhanov, V.A. Seleznev, Combust. Explos. Shock Waves 13 (2), 156 (1977). https://doi.org/10.1007/BF00754993
  18. B.S. Seplyarskii, R.A. Kochetkov, T.G. Lisina, N.M. Rubtsov, and N.I. Abzalov, Combust. and Flame 236, 111811 (2022). https://doi.org/10.1016/j.combustflame.2021.111811
  19. A.A. Zenin, A.G. Merzhanov, G.A. Nersisyan, Combust. Explos. Shock Waves 17 (1), 63 (1981). https://doi.org/10.1007/BF00772787
  20. I. A. Korol’chenko, A. V. Kazakov, A. S. Kukhtin, and V. L. Krylov, Pozharovzryvobezopasnost’ Veshch. Mater. 13 (4), 36 (2004) (in Russian).
  21. B.S. Seplyarskii, R.A. Kochetkov, Int. J Self-Propag. High-Temp. Synth. 17 (2), 134 (2017). https://doi.org/10.3103/S106138621702011X
  22. T. Slezak, J. Zmywaczyk, P. Koniorczyk, 21AIP Conf. Proc. 2170 (2019). https://doi.org/10.1063/1.5132738
  23. N.A. Martirosyan, S.K. Dolukhanyan and A.G. Merzhanov, Combust. Explos. Shock Waves. 17 (4), 369 (1981). https://doi.org/10.1007/BF00761202
  24. B.S. Seplyarskii, R.A. Kochetkov, T.G. Lisina, and N.I. Abzalov, Combust. Explos. Shock Waves 57 (3), 334 (2021). https://doi.org/10.1134/S0010508221030084
  25. A. V. Lykov, The Theory of Heat Conductivity (Мoscow: Vyssh.Shkola, 1967) (in Russian).
  26. A.S. Mukas’yan, V.A. Shugaev, and N.V. Kir’yakov, Combust. Explos. Shock Waves 29 (1), 7 (1993). https://doi.org/10.1007/BF00755319
  27. A. P. Aldushin and A. G. Merzhanov, In: Theory of filtration combustion: overview and status of research (Novosibirsk: Nauka, 1988) (in Russian).
  28. V. E. Zinov’ev, Thermophysical Properties of Metals at High Temperatures (Moscow: Metallurgiya, 1989) (in Russian).
  29. Yu.V. Sheludyak, L.Ya. Kashporov, L.A. Malinin, V.N. Tsalkov, Thermophysical properties of components of combustible systems (Moscow, 1992) (in Russian).
  30. L.N. Larikov, Yu.F. Yurchenko, Structure and properties of metals and alloys (Kiev, Naukova Dumka, 1985) (in Russian).
  31. M.A. Goldshtik, Transfer processes in granular laуer (Novosibirsk: Institute of Thermophysics of the Siberian Branch of the USSR Acad. Science, 1984) (in Russian).
  32. L.K. Gusachenko, V.E. Zarko, A.D. Rychkov, et al., Combust. Explos. Shock Waves 39 (6), 694 (2003). https://doi.org/10.1023/B:CESW.0000007683.81353.91
  33. N.G. Kasatskii, V.V. Filatov, and Yu.S. Naiborodenko, In: Self-propagating High-Temperature Synthesis (Tomsk: Tomsk Univ., 1991) (in Russian).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic diagram of the experimental setup: 1 – argon cylinder, 2 – argon flow sensors, 3 – gas pressure sensors, 4 – gas switch, 5 – tungsten spiral, 6 – charge, 7 – substrate, 8 – digital video camera, 9 – personal computer for recording data from sensors and video camera.

Download (237KB)
3. Fig. 2. Distribution of particles of powders of initial metal components by size.

Download (139KB)
4. Fig. 3. External appearance of titanium particles with d(Ti) = 60 µm (a) and d(Ti) = 120 µm (b).

Download (350KB)
5. Fig. 4. Photographs of powder (a) and granulated charge with granules of size D = 0.6 mm (b) and D = 1.7 mm (c) in a quartz reactor and a cylinder (d) made of metal mesh with granulated charge.

Download (341KB)
6. Fig. 5. Frames of combustion of a mixture with X = 20% at d(Ti) = 60 µm: a – powder mixture, b – granules with D = 0.6 mm, c – granules with D = 1.7 mm.

Download (333KB)
7. Fig. 6. Combustion rates of the powder mixture (100 − X)(Ti + C) + XNiCr with titanium at d(Ti) = 60 (1) and 120 µm (2) with varying nichrome content X.

Download (64KB)
8. Fig. 7. Dependences of the combustion rate of Ti + C mixtures with d(Ti) = 120 (a) and 60 μm (b) on the nichrome content X: 1 – powder mixture, 2 – granulated mixture with D = 0.6 mm, 3 – granulated mixture with D = 1.7 mm, 4 – combustion rate of the granule substance.

Download (155KB)
9. Fig. 8. Scheme of combustion of granulated mixtures; a – conductive mode: 1 – burnt granules, 2 – combustion of granule in conductive mode, 3 – start of heating of next granule, 4 – initial granules, H – depth of conductive heating by the moment of ignition, Ucom – combustion rate of granule substance; b – convective mode: 1 – burnt granules, 5 – combustion of granule, 6 – start of combustion of next layer, 4 – initial granules, D – granule size, H0 – depth of convective heating of granule by the moment of ignition by gas flow Gg.

Download (286KB)
10. Fig. 9. Dependences of combustion rates Uf (1) and Ugr (2) on the nichrome content X: D = 1.7 (a) and 0.6 mm (b).

Download (150KB)
11. Fig. 10. X-ray diffraction data of combustion products: a – powder mixture Ti + C; b – powder mixture, X = 20%, d(Ti) = 60 μm; c – granulated mixture, X = 20%, d(Ti) = 60 μm; g – powder mixture, X = 20%, d(Ti) = 120 μm; d – granulated mixture, X = 20%, d(Ti) = 120 μm.

Download (183KB)

Copyright (c) 2024 Russian Academy of Sciences