Verification of the Conclusions of the Microheterogeneous Model of Gas-Free Combustion at the Macroscopic Level

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The combustion velocities of two fractions of mechanically activated Ni + Al mixtures are compared in this paper. The combustion of pressed samples and samples of bulk density is studied. The main aim of the study is to experimentally verify the main conclusions of the microheterogeneous model of gas-free combustion at the macrolevel using an activated Ni + Al mixture as an example. The relative elongation, the combustion velocity of the samples, the macrostructure, and phase composition of the synthesis products are studied. The combustion velocity is maintained with a change in the density of the samples and slightly increases with a decrease in the size of the composite particles. It is established that pressed samples during combustion elongate more strongly than samples from bulk density. Samples consisting of large particles elongate more strongly during combustion than samples consisting of smaller particles. The phase composition of combustion products depends on the fraction of composite particles and sample density. An explanation of the regularities observed in this study is proposed.

Sobre autores

N. Kochetov

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, Chernogolovka, Russia

Email: kolyan_kochetov@mail.ru
Россия, Черноголовка

B. Seplyarskii

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, Chernogolovka, Russia

Autor responsável pela correspondência
Email: kolyan_kochetov@mail.ru
Россия, Черноголовка

Bibliografia

  1. Сычев А.Е., Вадченко С.Г., Щукин А.С. и др. // Хим. физика. 2022. Т. 41. № 1. С. 69; https://doi.org/10.31857/S0207401X22010150
  2. Кришеник П.М., Костин С.В., Рогачев С.А. // Хим. физика. 2022. Т. 41. № 3. С. 73; https://doi.org/10.31857/S0207401X22030086
  3. Вадченко С.Г., Алымов М.И. // Хим. физика. 2022. Т. 41. № 3. С. 22; https://doi.org/10.31857/S0207401X2203013X
  4. Рогачев А.С., Мукасьян А.С. // Физика горения и взрыва. 2015. Т. 51. № 1. С. 66.
  5. Вадченко С.Г. // Там же. 2002. Т. 38. № 1. С. 55.
  6. Рогачев А.С., Вадченко С.Г., Кочетов Н.А. и др. // Горение и плазмохимия. 2016. Т. 14. № 4. С. 294.
  7. Рогачев А.С., Кочетов Н.А., Курбаткина В.В. и др. // Физика горения и взрыва. 2006. Т. 42. № 4. С. 61.
  8. Рогачев А.С. // Там же. 2003. Т. 39. № 2. С. 38.
  9. Корчагин М.А., Григорьева Т.Ф., Бохонов Б.Б. и др. // Там же. № 1. С. 51.
  10. Корчагин М.А., Григорьева Т.Ф., Бохонов Б.Б. и др. // Там же. С. 60.
  11. Кочетов Н.А., Сеплярский Б.С. // Физика горения и взрыва. 2014. Т. 50. № 4. С. 29.
  12. Кочетов Н.А., Сеплярский Б.С. // Хим. физика. 2022. Т. 41. № 1. С. 42; https://doi.org/10.31857/S0207401X22010071
  13. Кочетов Н.А., Сеплярский Б.С. // Хим. физика. 2020. Т. 39. № 9. С. 39; https://doi.org/10.31857/S0207401X20090058
  14. Кочетов Н.А., Сеплярский Б.С. // Хим. физика. 2018. Т. 37. № 10. С. 44; https://doi.org/10.1134/S0207401X18100059
  15. Рогачев А.С. // Успехи химии. 2019. № 9. С. 875; https://doi.org/10.1070/RCR4884
  16. Kamynina O.K., Rogachev A.S., Sytschev A.E., Umarov L.M. // Intern. J. Self-Propag. High-Temp. Synth. 2004. V. 13. № 3. P. 193.
  17. Камынина О.К., Рогачев А.С., Умаров Л.М. // Физика горения и взрыва. 2003. Т. 39. № 5. С. 69.
  18. Vadchenko S.G. // Intern. J. Self-Propag. High-Temp. Synth. 2016. V. 25. № 4. P. 210; https://doi.org/10.3103/S1061386216040105
  19. Vadchenko. S.G. // Ibid. 2015. V. 24. № 2. P. 90; https://doi.org/10.3103/S1061386215020107
  20. Гегузин Я.Е. Физика спекания. М.: Наука, 1984.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (71KB)
3.

Baixar (947KB)
4.

Baixar (1MB)
5.

Baixar (1MB)
6.

Baixar (1MB)
7.

Baixar (1MB)
8.

Baixar (140KB)

Declaração de direitos autorais © Н.А. Кочетов, Б.С. Сеплярский, 2023