Molecular Modeling of the Interaction of a Cluster of Chromium-Containing Polyacrylonitrile with Pollutant Gases

Capa

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The possibility of the adsorption of priority pollutant gases (nitrogen dioxide, methane, ammonia, sulfur oxide (II), hydrogen sulfide, ozone, carbon monoxide, carbon monoxide (II), chlorine) on the surface of chromium-containing pyrolyzed polyacrylonitrile (pPAN) is evaluated. A model of a cluster of chromium-containing pPAN (Cr-PAN) is constructed. The thermodynamic parameters of the following systems are determined by the method of molecular modeling and compared: Cr-pPAN cluster–gas molecule, Cr-pPAN cluster–oxygen molecule, Cr-pPAN cluster–water molecule, Cr-PAN cluster–oxygen molecule–gas molecule, and Cr–pPAN cluster–water molecule–gas molecule. The effect of a water molecule on the process of adsorption of pollutant gases on the surface of a Cr–PAN cluster and the absence of an effect of an oxygen molecule located in the immediate vicinity of the clusters are revealed. It is established that Cr-pPAN has the property of selective adsorption of the following gases: nitrogen dioxide, chlorine, and ammonia. Within the density functional theory (DFT), the force parameters of the Cr–pPAN structure are estimated and the increase in the contact surface zone upon the introduction of a Cr2O3 molecule is confirmed.

Sobre autores

M. Avilova

Don State Technical University

Email: olvp2808@rambler.ru
Rostov-on-Don, Russia

N. Zolotareva

Astrakhan State University

Email: olvp2808@rambler.ru
Astrakhan, Russia

O. Popova

Don State Technical University

Autor responsável pela correspondência
Email: olvp2808@rambler.ru
Rostov-on-Don, Russia

Bibliografia

  1. Ke F., Zhang Q., Ji L. et al. // Compos. Commun. 2021. V. 27. 100817; https://doi.org/10.1016/j.coco.2021.100817
  2. Герасимов Г.Н., Громов В.Ф., Иким М.И., Трахтенберг Л.И. // Хим. физика. 2021. V. 40. № 11. P. 65; https://doi.org/10.31857/S0207401X21110030
  3. Боднева В.Л., Кожушнер М.А., Посвянский В.С., Трахтенберг Л.И. // Хим. физика. 2019. V. 38. № 1. P. 75; https://doi.org/10.1134/S0207401X19010060
  4. Wang W., Zheng Y., Jin X. et al. // Nano Energy. 2019. V. 56. P. 588; https://doi.org/10.1016/j.nanoen.2018.11.082
  5. Efimov M.N., Sosenkin V.E., Volfkovich Yu.M. et al. // Electrochem. Commun. 2018. V. 96. P. 98; https://doi.org/10.1016/j.elecom.2018.10.016
  6. Imanian Z., Hormozi F., Torab-Mostaedi M., Asadollahzadeh M. // Sep. Purif. Technol. 2022. V. 289. 120749; https://doi.org/10.1016/j.seppur.2022.120749
  7. Kozlov V.V., Karpacheva G.P., Petrov V.S., Lazovskaya E.V. // Polym. Sci., Ser. A. 2001. V. 43. P. 20.
  8. Laffont L., Monthioux M., Serin V. et al. // Carbon. 2004. V. 42. P. 2485; https://doi.org/10.1016/j.carbon.2004.04.043
  9. Yoshida H., Sato N. // Rus. J. Phys. Chem. A. 2006. V. 110. P. 4232; https://doi.org/10.1021/jp0546397
  10. Kozlov V.V., Kozhitov L.V., Kostishyn V.G. et al. // IOP Conf. Ser: Mater. Sci. Eng. 2009. V. 5. 012021; https://doi.org/10.1088/1757-899X/5/1/012021
  11. Merdrignac-Conanec O., Bernicot Y., Guyader J. // Sens. Actuators, B. 2000. V. 63. P. 86; https://doi.org/10.1016/S0925-4005(00)00302-6
  12. Ghorpade R.V., Cho D.W., Hong S.C. // Carbon. 2017. V. 121. P. 502; https://doi.org/10.1016/j.carbon.2017.06.015
  13. Kim Ye-Na, Park Eun-Young, Lee Deuk Yong // J. Korean Ceram. Soc. 2007. V. 44. P. 194; https://doi.org/10.4191/kcers.2007.44.4.194
  14. Ерёмин В.С., Бронштейн Л.М., Дьячкова В.П. и др. // Высокомолекуляр. соединения. А. 1993. Т. 35. № 4. С. 450.
  15. Солодовников С.П., Бронштейн Л.М., Логинова Т.П. и др. // Высокомолекуляр. соединения. Б. 1993. Т. 35. № 1. С. 26.
  16. Авилова М.М., Марьева Е.А., Попова О.В., Финоченко Т.А. // ЖФХ. 2020. Т. 94. № 6. С. 898; https://doi.org/10.31857/S0044453720060047
  17. Авилова М.М., Марьева Е.А., Попова О.В., Иванова Т.Г. // Изв. вузов. Химия и химическая технология. 2020. Т. 63. № 4. С. 49; https://doi.org/10.6060/ivkkt.20206304.6008
  18. Авилова М.М., Петров В.В. // Хим. физика. 2018. Т. 37. № 4. С. 69; https://doi.org/10.7868/S0207401X18040088
  19. Авилова М.М., Петров В.В. // Хим. физика. 2017. Т. 36. № 7. С. 90; https://doi.org/10.7868/S0207401X17070020
  20. Avilova M.M., Petrov V.V. // Chemosensors. 2018. V. 6. № 3. P. 39; https://doi.org/10.3390/chemosensors6030039
  21. Gupta A.K., Paliwal D.K., Bajaj P. // J. Appl. Polym. Sci. 1995. V. 58. № 7. P. 1161; https://doi.org/10.1002/app.1995.070580710
  22. Surianarayanan M., Vijayaraghavan R., Raghavan K.V. // J. Polym. Sci., Part A: Polym. Chem. 1998. V. 36. № 14. P. 2503; https://doi.org/10.1002/(SICI)1099-0518(199810)36: 14<2503::AID-POLA9>3.0.CO;2-T
  23. Allinger N.L. // J. Amer. Chem. Soc. 1977. V. 99. № 2). P. 8127; https://doi.org/10.1021/ja00467a001
  24. Stewart J.J.P. // J. Mol. Modeling. 2013. V. 19. № 1. P. 1; https://doi.org/10.1007/s00894-012-1667-x
  25. Klamt A., Schuurmann G. // J. Chem. Soc., Perkin Trans. 2. 1993. № 5. P. 799; https://doi.org/10.1039/P29930000799
  26. Pritchard B.P., Altarawy D., Didier B. et al. // J. Chem. Inf. Model. 2019. V. 59. № 11. P. 4814; https://doi.org/10.1021/acs.jcim.9b00725
  27. Anandan K., Rajendran V. // Mater. Lett. 2015. V. 146. P. 99; https://doi.org/10.1016/j.matlet.2015.02.014
  28. Baker J. // J. Comp. Chem. 1986. V. 7. № 4. P. 385; https://doi.org/10.1002/jcc.540070402
  29. Пономарев Д.А. Дис. … канд. физ.-мат. наук. Екатеринбург: Институт физики металлов им. М.Н. Михеева УрО РАН, 2018.
  30. MOPAC2016 / James J.P. Stewart, Stewart Computational Chemistry/ Colorado Springs, CO, USA, 2016; http://openmopac.net/
  31. Ito S., Fedorov D.G., Okamoto Y., Irle S. // Comput. Phys. Commun. 2018. V. 228. P. 152; https://doi.org/10.1016/j.cpc.2018.01.014
  32. Abdullah M.M., Rajab F.M., Al-Abbas S.M. // AIP Advances. 2014. V. 4. 027121; https://doi.org/10.1063/1.4867012
  33. Skjelbred K.M., Astrand Per-Olof et al. // AIP Conference Proceedings. 2015. V. 1702. 090061; https://doi.org/10.1063/1.4938869

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (244KB)
3.

Baixar (632KB)
4.

Baixar (109KB)
5.

Baixar (77KB)
6.

Baixar (88KB)
7.

Baixar (113KB)

Declaração de direitos autorais © М.М. Авилова, Н.В. Золотарёва, О.В. Попова, 2023