Virtual Spectrometer of Positron Annihilation Lifetimes Based on a Simulator
- Authors: Shantarovich V.P.1, Novikov Y.A.2
-
Affiliations:
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
- Prokhorov General Physics Institute, Russian Academy of Sciences
- Issue: Vol 42, No 5 (2023)
- Pages: 79-86
- Section: ХИМИЧЕСКАЯ ФИЗИКА НАНОМАТЕРИАЛОВ
- URL: https://cijournal.ru/0207-401X/article/view/674872
- DOI: https://doi.org/10.31857/S0207401X23050114
- EDN: https://elibrary.ru/PCBUZT
- ID: 674872
Cite item
Abstract
In this paper, the basic principles of the creation of a virtual positron annihilation lifetime spectrometer are considered. The possibility of using such a virtual measuring instrument to verify the data on the size distribution of micropores obtained based on the actually measured annihilation characteristics in systems with a highly developed free volume is discussed.
About the authors
V. P. Shantarovich
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: nya@kapella.gpi.ru
Moscow, Russia
Yu. A. Novikov
Prokhorov General Physics Institute, Russian Academy of Sciences
Author for correspondence.
Email: nya@kapella.gpi.ru
Moscow, Russia
References
- Гольданский В.И. Физическая химия позитрона и позитрония. М.: Наука, 1968.
- Green J., Lee J. Positronium Chemistry. New York–London: Academic Press, 1964.
- Positrons in Solids / Ed. Hautojarvi P. Topics in Current Physics. V. 12. Berlin: Springer-Verlag, 1979.
- Шантарович В.П., Ямпольский Ю.П., Кевдина И.Б. // Химия высоких энергий. 1994. Т. 28. № 1. С. 53.
- Principles and Applications of Positron and Positronium Chemistry / Eds. Jean Y.C., Mallon, P.E., Schrader D.M. New Jersey, London, Singapore, Hong Kong: World Scientific, 2003.
- Shantarovich V.P. // J. Polym. Sci., Part B: Polym. Phys. 2008. V. 46. P. 2485.
- Zaleski R., Kierys A., Dziadosz M., Goworek J., Halasz I. // RSC Adv. 2012. V. 2. P. 3729.
- Шантарович В.П. Бекешев В.Г., Бермешев М.В. и др. // Химия высоких энергий. 2009. Т. 53. № 4. С. 276.
- Новиков Ю.А. // Нано- и микросистемная техника. 2014. № 11. С. 29–36.
- Новиков Ю.А. // Микроэлектроника. 2013. Т. 42. № 1. С. 34.
- Новиков Ю.А. // Микроэлектроника. 2013. Т. 42. № 4. С. 262.
- Shukla S., Peter M., Hoffman L. // Nucl. Instrum. Methods Phys. Res., Sect. A. 1993. V. 335. P. 310.
- Dlubek G., Eichler S. // Phys. Status Solidi A. 1998. V. 168. P. 333.
- Dlubek G., Eichler S., Hubner Ch., Nagel Ch. // Phys. Status Solidi A. 1999. V. 174. P. 313.
- Rudel M., Krause J., Ratzke K. et al. // Macromol. 2008. V. 41. P. 788.
- Stepanov S., Zvezhinskii D., Duplatre G., Byakov V., Sabrahmanyam V. // Math. Sci. Forum 2009. V. 607. P. 260.
- Wong S.M. Introductory Nuclear Physics. Second ed. Wiley-VCH, 2012. P. 207–233.
- Kierkegaard P., Pedersen N.J., Eldrup M. PATFIT-88. Riso National Laboratory. Roskilde, Denmark, 1989.
- Provencher S.W. // Comput. Phys. Commun. 1982. V. 27. P. 213.
- Tao S.J. // J. Chem. Phys. 1972. V. 56. P. 5499.
- Eldrup M., Lightbody D., Sherwood J.N. // Chem. Phys. V. 63. № 1–2. P. 51.
- Ермаков С.М., Михайлов Г.А. Курс статистического моделирования. М.: Наука, 1976.
- Applications of Monte Carlo Method in Science and Engineering / Ed. Mordechai S. Croatia: InTech, 2011.
- Новиков Ю.А., Раков А.В., Хорев А.Б., Шантарович В.П. // Поверхность. Физика, химия, механика. 1992. № 8. С. 62.
- Goldanskii V.I., Novikov Yu.A., Rakov A.V., Shantarovich V.P. // Struct. Chem. 1991. V. 2. P. (135)343.
Supplementary files
