Energy Capabilities of Hydroxylammonium Salts of Nitroamine Derivatives of Some Polynitrogen Fused Heterocycles as Components of Composite Propellants

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The ballistic characteristics of energy systems based on hydroxylammonium salts of nitroamine derivatives of some polynitrogen fused heterocycles are considered. The quantitative dependences of the energy parameters of such systems on the properties of the studied compound (the main filler), the proportion of aluminum, the presence of additional oxidizing agents in the composition, and the type of binder are established. All the considered compounds (I–V) outperform the classical energy components in the class of composite propellants (CPs) without condensed combustion products. The most effective component is dihydroxylammonium salt (E)-1,2-bis(3-nitroamino-[1,2,4]triazolo[4,3-b][1,2,4,5]tetrazin-6-yl)diazene (V), which significantly exceeds many of the known components in terms of the value of the effective impulse in the third stage (Ief(3) = 279.7 s). However, when using a more realistic value of the enthalpy of the formation of compound V (according to our estimate) in the calculations, the indicator for the composition based on compound V dropped to 266.8 c, and the dihydroxylammonium salt of 1,4-bis(nitroamino)-3,6-dinitropyrazolo[4,3-c]pyrazole (I) with Ief(3) = 267.8 s performed the best.

About the authors

I. N. Zyuzin

Institute of Problems of Chemical Physics, Russian Academy of Sciences

Email: zyuzin@icp.ac.ru
Chernogolovka, Russia

I. Yu. Gudkova

Institute of Problems of Chemical Physics, Russian Academy of Sciences

Email: zyuzin@icp.ac.ru
Chernogolovka, Russia

D. B. Lempert

Institute of Problems of Chemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: zyuzin@icp.ac.ru
Chernogolovka, Russia

References

  1. Гудкова И.Ю., Зюзин И.Н., Лемперт Д.Б. // Хим. физика. 2020. Т. 39. № 3. С. 53; https://doi.org/10.31857/S0207401X20030061
  2. Зюзин И.Н., Гудкова И.Ю., Лемперт Д.Б. // Хим. физика. 2020. Т. 39. № 9. С. 52; https://doi.org/10.31857/S0207401X20090149
  3. Зюзин И.Н., Гудкова И.Ю., Лемперт Д.Б. // Хим. физика. 2021. Т. 40. № 7. С. 24; https://doi.org/10.31857/S0207401X2107013X
  4. Зюзин И.Н., Волохов В.М., Лемперт Д.Б. // Хим. физика. 2021. Т. 40. № 9. С. 18; https://doi.org/10.31857/S0207401X21090107
  5. Гудкова И.Ю., Зюзин И.Н., Лемперт Д.Б. // Хим. физика. 2022. Т. 41. № 1. С. 34; https://doi.org/10.31857/S0207401X2201006X
  6. Зюзин И.Н., Гудкова И.Ю., Лемперт Д.Б. // Хим. физика. 2022. Т. 41. № 9. С. 45; https://doi.org/10.31857/S0207401X2209014X
  7. Зюзин И.Н., Гудкова И.Ю., Лемперт Д.Б. // Хим. физика. 2022. Т. 41. № 12. С. 36; https://doi.org/10.31857/S0207401X22120129
  8. Gao H., Zhang Q., Shreeve J.M. // J. Mater. Chem. A. 2020. V. 8. № 8. P. 4193; https://doi.org/10.1039/C9TA12704F
  9. Yin P., Zhang J., Mitchell L.A., Parrish D.A., Shreeve J.M. // Angew. Chem. Intern. Ed. 2016. V. 55. № 41. P. 12895; https://doi.org/10.1002/anie.201606894
  10. Liu Y., Zhao G., Tang Y., Zhang J. et al. // J. Mater. Chem. A. 2019. V. 7. № 44. P. 7875; https://doi.org/10.1039/c9ta01717h
  11. Bian C., Feng W., Lei Q. et al. // Dalton Trans. 2020. V. 49. P. 368; https://doi.org/10.1039/c9dt03829a
  12. Hu L., Yin P., Zhao G. et al. // J. Amer. Chem. Soc. 2018. V. 140. P. 15 001; https://doi.org/10.1021/jacs.8b09519
  13. Lempert D.B. // Chin. J. Explos. Propellants. 2015. V. 38. № 4. P. 1; https://doi.org/10.14077/j.issn.1007-7812.2015.04.001
  14. Hечипоренко Г.H., Лемперт Д.Б. // Хим. физика. 1998. Т. 17. № 10. С. 93.
  15. Meyer R., Kohler J., Homburg A. Explosives. 7th ed. Weinheim (Germany): Wiley, 2016.
  16. Трусов Б.Г. // Тез. докл. XIV Междунар. конф. по химической термодинамике. СПб: НИИ химии СПбГУ, 2002.
  17. Павловец Г.Я., Цуцуран В.И. Физико-химические свойства порохов и ракетных топлив. М.: Изд-во Министерства обороны, 2009.
  18. Дорофеенко Е.М., Лемперт Д.Б. // Хим. физика. 2021. Т. 40. № 3. С. 48; https://doi.org/10.31857/S0207401X21030043
  19. Кизин А.Н., Дворкин П.Л., Рыжова Г.Л., Лебедев Ю.А. // Изв. АН СССР. Сер. хим. 1986. № 2. С. 372.
  20. Lempert D.B., Nechiporenko G.N., Manelis G.B. // Cent. Eur. J. Energetic. Mater. 2006. V. 3. № 4. P. 73.
  21. Li Y., Wang B., Chang P. et al. // RSC Adv. 2018. V. 8. № 25. P. 13755; https://doi.org/10.1039/C8RA02491J
  22. Konkova T.S., Matyushin Yu.N., Miroshnichenko E.A., Asachenko A.F., Dzhevakov P.B. Proc. 47th Intern. Annu. Conf. Fraunhofer ICT (Karlsruhe, Germany). 2016. P. 90.
  23. Fischer D., Klapotke T.M., Piercey D.G., Stierstorfer J. // Chem. Eur. J. 2013. V. 19. № 14. P. 4602; https://doi.org/10.1002/chem.201203493
  24. Sinditskii V.P., Serushkin V.V., Kolesov V.I. // Propellants Explos. Pyrotech. 2021. V. 46. № 10. P. 1504; https://doi.org/10.1002/prep.202100173
  25. Иноземцев Я.О., Иноземцев А.В., Махов М.Н., Воробьёв А.Б., Матюшин Ю.Н. // Хим. физика. 2021. Т. 40. № 12. С. 39; https://doi.org/10.31857/S0207401X21120074
  26. Лемперт Д.Б., Нечипоренко Г.Н., Долганова Г.П. // Хим. физика. 1998. Т. 17. № 7. С. 87.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (109KB)
3.

Download (12KB)
4.

Download (84KB)
5.

Download (63KB)
6.

Download (66KB)
7.

Download (90KB)
8.

Download (48KB)

Copyright (c) 2023 И.Н. Зюзин, И.Ю. Гудкова, Д.Б. Лемперт