Euler Arches and Duffing Springs of a Few Nanometers in Size

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The molecular dynamics of a rod-like oligomer of N-isopropylmethacrylamide and helical oligomers of pyridine-furan several nanometers in size are studied by full-atomic computer simulation. It is shown that, under compression and tension, the dynamics of the oligomers are similar to the dynamics of classical bistable constructions such as Euler arches and Duffing oscillators. The critical values of power loads at which the dynamic states of oligomers bifurcate and the dynamics of oligomers become bistable are determined. It is shown that in the region of bistability oligomers can switch to the regime of spontaneous vibrations activated by thermal fluctuations of the environment at room temperature. For the regime of spontaneous vibrations, the effect of stochastic resonance is demonstrated. The possibility of using bistable oligomers for the detection of single organic molecules in solutions is discussed.

Sobre autores

V. Avetisov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; Design Center for Molecular Machines

Email: avetisov@chph.ras.ru
Moscow, Russia; Moscow, Russia

A. Astakhov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: avetisov@chph.ras.ru
Moscow, Russia

A. Valov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: avetisov@chph.ras.ru
Moscow, Russia

A. Markina

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: avetisov@chph.ras.ru
Moscow, Russia

A. Muratov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; Design Center for Molecular Machines

Email: avetisov@chph.ras.ru
Moscow, Russia; Moscow, Russia

V. Petrovsky

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; Design Center for Molecular Machines

Email: avetisov@chph.ras.ru
Moscow, Russia; Moscow, Russia

M. Frolkina

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; Design Center for Molecular Machines

Autor responsável pela correspondência
Email: avetisov@chph.ras.ru
Moscow, Russia; Moscow, Russia

Bibliografia

  1. Peschot A. // Micromachines. 2015. V. 6. № 8. P. 1046.
  2. Dutreix C., Avriller R., Lounis B. et al. // Phys. Rev. Res. 2020. V. 2. № 2. P. 023268.
  3. Benda L., Doistau B., Rossi-Gendron C. et al. // Commun. Chem. 2019. V. 2. № 1. P. 1.
  4. Erbas-Cakmak S., Kolemen S., Sedgwick A. C. et al. // Chem. Soc. Rev. 2018. V. 47. P. 2228.
  5. Varghese S., Elemans J. A. A. W., Rowan A. E. et al. // Chem. Sci. 2015. V. 6. P. 6050.
  6. Shu T., Shen Q., Zhang X. et al. // Analyst. 2020. V. 145. № 17. P. 5713.
  7. Lemme M.C., Wagner S., Lee K. et al. // Research. 2020. V. 2020. P. 1.
  8. Zhang L., Marcos V., Leigh D.A. // PNAS. 2018. V. 115. № 38. P. 9397.
  9. Shi Z.-T., Zhang Q., Tian H. et al. // Adv. Intelligent Systems. 2020. V. 2. № 5. P. 1900169.
  10. Aprahamian I. // ACS Central Sci. 2020. V. 6. № 3. P. 347.
  11. Nicoli F., Paltrinieri E., Tranfić M. // Coord. Chem. Rev. 2021. V. 428. P. 213589.
  12. Evans D.J., Searles D.J. // Adv. Phys. 2002. V. 51. № 7. P. 1529.
  13. Seifert U. // Rep. Prog. Phys. 2012. V. 75. № 12. P.126001.
  14. Horowitz J.M., Gingrich T.R. // Nat. Phys. 2020. V. 16. № 1. P. 15.
  15. Ciliberto S. // Phys. Rev. X. 2017. V. 7. P. 021051.
  16. Wang G.M., Sevick E.M., Mittag E. et al. //Phys. Rev. Lett. 2002. V. 89. № 5. P. 050601.
  17. Jop P., Petrosyan A., Ciliberto S. // Europhys. Lett. 2008. V. 81. № 5. P. 50005.
  18. Vroylandt H., Esposito M., Verley G. // Phys. Rev. Lett. 2020. V. 124. № 25. P. 250603.
  19. Аветисов В.А., Гольданский В.И. // УФН. 1996. Т. 166. № 8. С. 873.
  20. Avetisov V.A., Goldanskii V.I. // PNAS. 1996. V. 93. P. 11 435.
  21. Аветисов В.А. Гольданский В.И. // Хим. физика. 1997. Т. 16. № 8. С. 59.
  22. Аветисов В.А. // Хим. физика. 2003. Т. 22. № 2. С. 16.
  23. Arnold V.I. / Catastrophe Theory. Berlin-Heidelberg: Springer, 1984.
  24. Poston T., Stewart I. Catastrophe theory and its applications. Mineola, N.Y.: Dover Publication, 1996.
  25. Duffing G. Erzwungene schwingungen bei veranderlicher Eigenfrequenz und ihre technische Bedeutung. Sammlung Vieweg № 41–42. F. Vieweg & Sohn, 1918.
  26. Chaos / Eds. Korsch H.J., Jodl H.-J., Hartmann T. Berlin–Heidelberg: Springer, 2008. P. 157.
  27. Kramers H.A. // Physica. 1940. V. 7. № 4. P. 284.
  28. Benzi R., Sutera A., Vulpiani A. // J. Phys. A: Math. Gen. 1981. V. 14. № 11. P. L453.
  29. Benzi R., Parisi G., Sutera A. et al. // Tellus. 1982. V. 34. № 1. P. 10.
  30. Benzi R., Parisi G., Sutera A. et al. // SIAM J. Appl. Mathem. 1983. V. 43. № 3. P. 565
  31. Gammaitoni L., Haönggi P., Jung P. et al. // Rev. Modern Phys. 1998. V. 70. № 1. P. 223.
  32. Wellens T., Shatokhin V., Buchleitner A. // Rep. Prog. Phys. 2004. V. 67. № 1. P. 45.
  33. Baughman R.H., Cui C., Zakhidov A.A., Iqbal Z.r et al. // Science. 1999. V. 284. P. 1340.
  34. Fujii H., Setiadi A., Kuwahara Y. et al. // Appl. Phys. Lett. 2017. V. 111. № 13. P. 133501.
  35. Huang K., Zhang S., Li J. et al // Microsystem Technol. 2019. V. 25. № 11. P. 4303.
  36. Ackerman M.L., Kumar P., Neek-Amal M. et al. // Phys. Rev. Lett. V. 117. № 12. P. 126 801.
  37. Hayashi K., Lorenzo S., Manosas M. et al. // Phys. Rev. X. 2012. V. 2. № 3. P. 031 012.
  38. Cecconi C., Shank E.A., Bustamante C. et al. // Science. 2005. V. 309. № 5743. P. 2057.
  39. Avetisov V.A., Markina A.A. Valov A.F. // J. Phys. Chem. Lett. 2019. V. 10. № 17. P. 5189.
  40. Avetisov V.A., Frolkina M.A., Markina A. et al // Nanomaterials. 2021. V. 11. P. 3264.
  41. Markina A., Muratov A., Petrovskyy V. et al. // Nanomaterials. 2020. V. 10. P.2519.
  42. Convertine A.J., Ayres N., Scales C.W. et al. // Biomacromolecules. 2004. V. 5. № 4. P. 1177.
  43. Gao Y., Wei M., Li X. et al. // Macromol. Res. 2017. V. 25. № 6. P. 513.
  44. Kamath G., Deshmukh S.A., Baker G.A. // Phys. Chem. Chem. Phys. 2013. V. 15. № 30. P. 12667.
  45. Jones R.A., Civcir P.U. // Tetrahedron. 1997. V. 53. № 34. P. 11529.
  46. Sahu H., Gupta S., Gaur P. et al. // Phys. Chem. Chem. Phys. 2015. V. 17. № 32. P. 20647.
  47. Berendsen H.J.C., Grigera J.R., Straatsma T.P. // J. Phys. Chem. 1987. V. 91. № 24. P. 6269.
  48. Abraham M.J., Murtola T., Schulz R. et al. // Software X. 2015. V. 1–2. P. 19.
  49. Kaminski G.A., Friesner R.A., Tirado-Rives J. et al. // J. Phys Chem. B. 2001. V. 105. № 28. P. 6474.
  50. Liang X., Nakajima K. // Macromol. Chem. Phys. 2018. V. 219. № 3. P. 1700394.
  51. Bussi G., Donadio D., Parrinello M. // J. Chem. Phys. 2007. V. 126. № 1. P. 014101.
  52. Avetisov V.A, Kuz’min V.V, Anikin S.A. // Chem. Phys. 1987. V. 112. № 2. P. 179.
  53. Lai Z., Leng Y. // Mech. Systems Signal Processing. 2016. V. 81. P. 60.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (471KB)
3.

Baixar (714KB)
4.

Baixar (435KB)
5.

Baixar (155KB)
6.

Baixar (673KB)
7.

Baixar (462KB)
8.

Baixar (328KB)
9.

Baixar (459KB)
10.

Baixar (203KB)
11.

Baixar (404KB)
12.

Baixar (152KB)

Declaração de direitos autorais © В.А. Аветисов, А.М. Астахов, А.Ф. Валов, А.А. Маркина, А.Д. Муратов, В.С. Петровский, М.А. Фролкина, 2023