On the Mechanism of Combustion Propagation in Porous Nanothermites

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The fast combustion process of nanosized porous Al + CuO mixtures placed in glass tubes is studied using a high-speed video recording. Mathematical processing of the high-velocity frame sequence obtained using neutral filters of different thicknesses made it possible to determine the nanothermite (NT) burning rate in different parts of the tube and experimentally estimate the sizes of the ignition and combustion zones of NT. To explain the mechanism of combustion propagation, a simple model based on Darcy’s law is proposed for the filtration of hot products through the macropores. Based on the results of the model experiments on the combustion of NT in glass-tubes filled by portions of the mixture separated by inert barriers (glass microspheres, air gaps), it was possible to develop a simple procedure to estimate the permeability of a nanosized mixture and pressure in the combustion zone.

Sobre autores

V. Kirilenko

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: aldol@chph.ras.ru
Moscow, Russia

A. Dolgoborodov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; Joint Institute for High Temperatures, Russian Academy of Sciences; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: aldol@chph.ras.ru
Moscow, Russia; Moscow, Russia; Moscow, Russia

M. Brazhnikov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: aldol@chph.ras.ru
Moscow, Russia

M. Kuskov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Autor responsável pela correspondência
Email: aldol@chph.ras.ru
Moscow, Russia

Bibliografia

  1. Energetic nanomaterials: synthesis, characterization, and application / Eds. Zarko V.E., Gromov A.A. Amsterdam: Elsevier, 2016.
  2. Nano-Energetic Materials: Energy, Environment and Sustainability / Eds. Bhattacharya S., Agarwal A.K., Rajagopalan T., Patel V.K. Singapore: Springer Nature Singapore, 2019.
  3. Yetter R.A. // Proc. Combust. Inst. 2021. V. 38. № 1. P. 57; https://doi.org/10.1016/j.proci.2020.09.008
  4. Polis M., Stolarczyk A., Glosz K., Jarosz T. // Materials. 2022. V. 15. № 9. P. 3215; https://doi.org/10.3390/ma15093215
  5. Pantoya M., Granier J. // J. Therm. Anal. Calorim. 2006. V. 85. P. 37; https://doi.org/10.1007/s10973-005-7342-z
  6. Dolgoborodov A.Yu., Kirilenko V.G., Brazhnikov M.A. et al. // Def. Technol. 2022. V. 18. № 2. P. 194; https://doi.org/10.1016/j.dt.2021.01.006
  7. Кириленко В.Г., Гришин Л.И., Долгобородов А.Ю. и др. // Горение и взрыв. 2022. Т. 15. № 1. С. 82.
  8. Densmore J.M., Sullivan K.T., Gash A.E., Kuntz J.D. // Propellants Explos. Pyrotech. 2014. V. 39. № 3. P. 416; https://doi.org/10.1002/prep.201400024
  9. Wang Y., Dai J., Xu J., Shen Y. et al. // Vacuum. 2021. V. 184. P. 109878; https://doi.org/10.1016/j.vacuum.2020.109878
  10. Weismiller M.R., Malchi J.Y., Yetter R.A., Foley T.J. // Proc. Combust. Inst. 2009. V. 32. № 2. P. 1895; https://doi.org/10.1016/j.proci.2008.06.191
  11. Baijot V., Rouhani M., Rossi C., Esteve A. // Combust. and Flame. 2017. V. 180. P. 10; https://doi.org/10.1016/j.combustflame.2017.02.031
  12. Egan G., Zachariah M. // Ibid. 2015. V. 162. P. 2959; https://doi.org/10.1016/j.combustflame.2015.04.013
  13. Jacob R., Kline D., Zachariah M. // J. Appl. Phys. 2018. V. 123. P. 115902; https://doi.org/10.1063/1.5021890
  14. Sanders V., Asay B., Foley T. et al. // J. Propul. Power. 2007. V. 23. № 4. P. 707; https://doi.org/10.2514/1.26089
  15. Saceleanu F., Idir M., Chaumeix N., Wen J.Z. // Front. Chem. 2018. V. 6. P. 465; https://doi.org/10.3389/fchem.2018.00465
  16. Jabraoui H., Esteve A., Schoenitz M. et al. // ACS Appl. Mater. Interfaces. 2022. V. 14. № 25. P. 29451; https://doi.org/10.1021/acsami.2c07069
  17. Sullivan K., Zachariah M.R. // J. Propul. Power. 2010. V. 26. № 3. P. 467; https://doi.org/10.2514/1.45834
  18. Ген М.Я., Петров Ю.И. // Успехи химии. 1969. Т. 38. № 12. С. 2249.
  19. Kuskov M.L., Zhigach A.N., Leipunskii I.O. et al. // IOP Conf. Ser.: Mater. Sci. Eng. 2019. V. 558. № 1. Article 012022; https://doi.org/10.1088/1757-899X/558/1/012022
  20. Streletskii A.N., Kolbanev I.V., Vorobieva G.A. et al. // J. Mater. Sci. 2018. V. 53. № 19. P. 13550; https://doi.org/10.1007/s10853-018-2412-3
  21. Стрелецкий А.Н., Колбанев И.В., Трошин К.Я. и др. // Хим. физика. 2016. Т. 35. № 7. С. 79; https://doi.org/10.7868/S0207401X16070116
  22. Кириленко В.Г., Гришин Л.И., Долгобородов А.Ю., Бражников М.А. // Горение и взрыв. 2020. Т. 13. № 1. С. 145.
  23. Kaviany M. Principles of Heat Transfer in Porous Media. New York: Second Edition. Springer-Verlag, 1995; https://doi.org/10.1007/978-1-4612-4254-3
  24. Um K., Zhang X., Katsoulakis M., Plechas P., Tartakovsky D.M. // J. Appl. Phys. 2018. V. 123. № 7. Article 075103; https://doi.org/10.1063/1.5009691
  25. Бабичев А.П., Бабушкина Н.А., Братковский А.М. и др. Физические величины: Справ. М.: Энергоатомиздат, 1991.
  26. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т. 6. Гидродинамика. М.: Физматлит, 2001.
  27. Fischer S.H., Grubelich M.C. // Proc. 24th Intern. Pyrotechnics Seminar: Sandia National Laboratories (SNL), Monterey, USA. 1998. V. 1176. P. 56.
  28. Кришеник П.М., Костин С.В., Озерковская Н.И., Шкадинский К.Г. // Хим. физика. 2019. Т. 38. № 2. С. 45; https://doi.org/10.1134/S0207401X19020092
  29. Кришеник П.М., Костин С.В., Рогачев С.А. // Хим. физика. 2022. Т. 41. № 3. С. 73. https://doi.org/10.31857/S0207401X22030086

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (762KB)
3.

Baixar (68KB)
4.

Baixar (957KB)
5.

Baixar (104KB)
6.

Baixar (93KB)
7.

Baixar (218KB)
8.

Baixar (789KB)
9.

Baixar (118KB)
10.

Baixar (118KB)
11.

Baixar (111KB)
12.

Baixar (108KB)
13.

Baixar (852KB)
14.

Baixar (578KB)
15.

Baixar (91KB)
16.

Baixar (90KB)

Declaração de direitos autorais © В.Г. Кириленко, А.Ю. Долгобородов, М.А. Бражников, М.Л. Кусков, 2023