Synthesis of Reactive Pegylated Indocyanine Dyes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Synthesis was carried out with the selection of conditions for the isolation and purification of fluorescently labeled polyethylene glycol with a reactive carboxyl group for labeling biomolecules. Pegylated nucleotides, which are part of drugs, allow targeted delivery to the target organ, prolong the half-life, reduce immunogenicity and increase stability.

About the authors

V. E Shershov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, Russia

V. E Kuznetsova

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: kuzneimb@gmail.com
Moscow, Russia

G. F Shtylev

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, Russia

I. Yu Shishkin

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, Russia

R. A Miftahov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, Russia

V. I Butvilovskaya

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, Russia

I. V Grechishnikova

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, Russia

A. A Stomahin

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, Russia

O. A Zasedateleva

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, Russia

A. V Chudinov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, Russia

References

  1. Рогfryeva N.N., Moustafine R.I., Khutoryanskiy V.V. // Polym. Sci. Ser. C. 2020. V. 62. P. 62–74. https://doi.org/10.1134/S1811238220010094
  2. Maier K.E., Rusconi C.P., Levy M. // Cell Chem. Biol. 2019. V. 26. P. 615–616. https://doi.org/10.1016/j.chembiol.2019.03.004
  3. Moreno A., Pitoo G.A., Ganson N.J., Layzer J.M., Hershfield M.S., Tarantal A.F., Sullenger B.A. // Cell Chem. Biol. 2019. V. 26. P. 634–644. https://doi.org/10.1016/j.chembiol.2019.02.009
  4. Zalipsky S. // Bioconjug. Chem. 1995. V. 6. P. 150–165. https://doi.org/10.1021/bc00034a003
  5. Veronese F.M., Caliceti P., Schiavon O. // J. Bioact. Comput. Polym. 1997. V. 12. P. 196–207. https://doi.org/10.1177/088391159701200302
  6. Geckli H., Xu F., Zhang X., Moon S., Demirci U. // Nanomedicine. 2010. V. 5. P. 469–484. https://doi.org/10.2217/nmm.10.21
  7. Thapaliya E.R., Usama S.M., Patel N.L., Feng Y., Kalen J.D., Croix B.S., Schuermann M.J. // Bioconjug. Chem. 2022. V. 33. P. 718–725. https://doi.org/10.1021/aos.bioconjchem.2c00015
  8. Zasedateleva O.A., Vasiliskov V.A., Surzhikov S.A., Kuznetsova V.E., Shershov V.E., Guestnov T.O., Sminov I.P., Yarasov R.A., Spitsyn M.A., Chudinov A.V. // Nucleic Acids Res. 2018. V. 46. P. e73. https://doi.org/10.1093/nar/gky251
  9. Shershov V.E., Lapa S.A., Levashova A.I., Shishkin I.Yu., Shlylev G.F., Shekalova E.Yu., Vasiliskov V.A., Zasedatelev A.S., Kuznetsova V.E., Chudinov A.V. // Russ. J. Bioorg. Chem. 2023. V. 49. P. 649–656. https://doi.org/10.1134/S1068162023050242
  10. Puchkov I.A., Bairamashvili D.I., Shvets V.I. // Fine Chem. Technol. 2014. V. 9. P. 3–31. https://doi.org/10.1134/S2410269414010063
  11. Roberts M.J., Bentley M.D., Harris J.M. // Adv. Drug Deliv. Rev. 2002. V. 54. P. 459–476. https://doi.org/10.1016/S0169-409X(02)00026-3
  12. Li J., Kao W.J. // Biomacromolecules. 2003. V. 4. P. 1055–1067. https://doi.org/10.1021/bm025727b
  13. Song F., Chen L., Lin R., Salter R. // J. Labelled Compd. Radiopharm. 2020. V. 63. P. 15–24. https://doi.org/10.1002/jlcr.3747

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences