Epigenetic variations in non-metric skull traits in american mink (Neogale vison Schreber, Carnivora, Mustelidae) strains after selecting for defensive behavioral characters
- 作者: Vasil’eva I.A.1, Trapezov O.V.2
-
隶属关系:
- Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Science
- Institute of Cytology and Genetics Federal Research Center, Siberian Branch, Russian Academy of Science
- 期: 卷 104, 编号 2 (2025)
- 页面: 69-86
- 栏目: ARTICLES
- URL: https://cijournal.ru/0044-5134/article/view/684676
- DOI: https://doi.org/10.31857/S0044513425020058
- EDN: https://elibrary.ru/ssnojq
- ID: 684676
如何引用文章
详细
The occurrence of discrete non-metric threshold traits (NTTs) of the axial skull and mandible was studied among strains of aggressive and tame American minks (Neogale vison Schreber, 1777), obtained after selecting for characters of defensive behavior at an experimental fur farm. Non-selected caged and wild Canadian minks were taken as control groups. After culling the NTTs with invariant frequencies, unclear topologies, single, rare (< 5%) and high-frequency (> 95%), three variants in the array of traits were used: “expanded” (50 traits), allowing for their connection with gender and size, “constrained” (30), excluding such a connection, and “combined” by gender (50), where the frequencies of males are only taken for sex-related traits. An assessment of the mean measures of divergence (MMD) based on the occurrence of NTT phenes in all variants revealed significant differences between the strains, as well as both control groups. In the first variant, the differences between the sexes were most pronounced, vs between the strains in the second and third. In all variants, aggressive and tame minks differed to the maximum degree, whereas the caged non-selected individuals occupied an intermediate position. When comparing samples, wild Canadian minks are the closest to caged non-selected minks, the divergence between aggressive and tame exceeding the difference between cage and wild. Canonical analysis of the principal components characterizing the manifestation of individual phenological compositions for a constrained separable set of 30 NTTs (with lower environmental and greater hereditary conditionality) revealed the same intergroup differences as on the basis of MMD. The effect of selection based on characters of defensive behavior for 16–17 generations was found to be accompanied by a greater differentiation of aggressive and tame American minks than wild and caged ones as a result of their almost century long isolation of the latter in fur farms. The values of the indices of epigenetic variability (EV) and the volume of within-group morphospace (Vm) characterizing the degree of destabilization of development, are significantly higher in tame minks than in aggressive ones. The results are in good agreement with Belyaev’s theory of destabilizing selection and indirectly indicate a high rate of epigenetic changes in experimental strains of the American mink, which explains the high adaptive potential of this invasive species during its range expansion in Eurasia.
作者简介
I. Vasil’eva
Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Science
编辑信件的主要联系方式.
Email: via@ipae.uran.ru
俄罗斯联邦, 8 Marta, 202, Yekaterinburg, 620144
O. Trapezov
Institute of Cytology and Genetics Federal Research Center, Siberian Branch, Russian Academy of Science
Email: via@ipae.uran.ru
俄罗斯联邦, akademika Lavrentieva Ave. 10, Novosibirsk, 630090
参考
- Астауров Б. Л., 1974. Наследственность и развитие. М.: Наука. 359 с.
- Беляев Д. К., 1979. Дестабилизирующий отбор как фактор изменчивости при доместикации животных // Природа. № 2. С. 36–45.
- Беляев Д. К., Трут Л. Н., 1989. Конвергентный характер формообразования и концепция дестабилизирующего отбора // Вавиловское наследие в современной биологии. М.: Наука. С. 155–169.
- Васильев А. Г., Трут Л. Н., Осадчук Л. В., 2004. Влияние доместикации на скорость и направление морфогенетических преобразований: возможная роль гетерохронии // Реализация морфологического разнообразия в природных популяциях млекопитающих. 2-е изд. Новосибирск: Изд-во СО РАН. С. 74–94.
- Васильев А. Г., 1995. Пакет специальных программ по фенетике “ФЕН” 3.0. Non-metrical threshold traits analysis “PHEN”. Version 3.0. Екатеринбург. [Электронный ресурс]. Режим доступа: http: //ipae.uran.ru/sites/default/files/PHEN%203_programguide.pdf (Дата обновления: 06.07.2024).
- Васильев А. Г., 2005. Эпигенетические основы фенетики: на пути к популяционной мерономии. Екатеринбург: Академкнига. 640 с.
- Васильев А. Г., Васильева И. А., 2009. Гомологическая изменчивость морфологических структур и эпигенетическая дивергенция таксонов: Основы популяционной мерономии. М.: Товарищество научных изданий КМК. 511 с.
- Глушкова Ю., Кораблев П. Н., 1997. Норка европейская (Mustela lutreola) // Популяционная фенетика. М.: Наука. С. 209–220.
- Кораблёв Н. П., Кораблёв П. Н., Кораблёв М. П., 2018. Микроэволюционные процессы в популяциях транслоцированных видов: евроазиатский бобр, енотовидная собака, американская норка. М.: Товарищество научных изданий КМК. 452 с.
- Кораблёв П. Н., Кораблёв М. П., Кораблёв Н. П., Туманов И. Л., 2020. Использование разных систем признаков в фенетике популяций // Известия РАН. Серия биологическая. № 2. С. 177–185.
- Монахов В. Г., 2010. Феногеография краниального признака соболя (Martes zibellina) в ареале // Доклады академии наук. Т. 431. № 2. С. 274–279.
- Ранюк М. Н., Монахов В. Г., 2011. Изменчивость краниологических признаков в популяциях соболя (Martes zibellina), возникших в результате акклиматизации // Зоологический журнал. Т. 90. № 1. С. 82–96.
- Трапезов О. В., 1987. Селекционное преобразование оборонительной реакции на человека у американской норки // Генетика. Т. 23. № 6. С. 1120–1127.
- Трапезов О. В., 2012. Новые окрасочные мутации у американской норки (Mustela vison), наблюдаемые в процессе ее экспериментальной доместикации: Автореф. дис. … докт. биол. наук. Новосибирск: ИЦиГ СО РАН. 34 с.
- Трут Л. Н., 1981. Генетика и феногенетика доместикационного поведения // Вопросы общей генетики / Под ред. Ю. П. Алтухова. М.: Наука. С. 323–332.
- Трут Л. Н., Харламова А. В., Пилипенко А. С., Гербек Ю. Э., 2021. Эксперимент по доместикации лисиц и эволюция собак с позиции современных молекулярно-генетических и археологических данных // Генетика. Т. 57. № 7. С. 767–785.
- Харламова А. В., Фалеев В. И., Трапезов О. В., 2000. Влияние селекции по поведению на краниологические признаки американской норки (Mustela vison) // Генетика. Т. 36. № 6. С. 823–828.
- Abramov A. V., Tumanov I. L., 2003. Sexual dimorphism in the skull of the European mink Mustela lutreola from NW part of Russia // Acta Theriologica. V. 48. P. 239– 246.
- Andersen T., Wiig O., 1982. Epigenetic variation in a fluctuating population lemming (Lemmus lemmus) in Norway // Journal of Zoology. V. 197. P. 391–404.
- Ansorge H., 2001. Assessing non-metric skeleton characters as a morphological tool // Zoology. V. 104. P. 268–277.
- Ansorge H., Ranyuk M., Kauhala K., Kowalczyk R., Stier N., 2009. Racoon dog, Nyctereutes procyonoides, populations in the area of origin and in colonized regions – the epigenetic variability of an immigrant // Annals of Zoologica Fennici. V. 46. P. 51–62.
- Badyaev A. V., 2014. Epigenetic resolution of the ‘curse of complexity’ in adaptive evolution of complex traits // J. Physiol. V. 592. № 11. P. 2251–2260.
- Badyaev A. V., Foresman K. R., Yang R. L., 2005. Evolution of morphological integration: developmental accommodation of stress-induced variation // American Naturalist. V. 166. P. 382–395.
- Bauchau V., 1988. Non-metrical variation in wild mammals: a bibliography // Mammal. Rev. V. 18. P. 195–200.
- Belyaev D. K., 1979. Destabilizing selection as a factor in domestication // J. Heredity. V. 70. № 5. P. 301–308.
- Berry A. C., 1978. Anthropological and family studies on minor variants of the dental crown // Development, function and evolution of teeth / P. M. Butler & K. A. Joysey (eds). London: Academic Press. P. 81–98.
- Berry A. C., Berry R. J., 1967. Epigenetic variation in the human cranium // J. Anatomy. V. 101. P. 361–379.
- Berry R. J., 1963. Epigenetic polymorphism in wild population of Mus musculus // Genetical Research, Cambr. V. 4. P. 193–220.
- Berry R. J., Searle A. G., 1963. Epigenetic polymorphism of the rodent skeleton // Proc. Zool. Soc. Lond. V. 140. P. 557– 615.
- Bošković A., Rando O. J., 2018. Transgenerational epigenetic inheritance // Ann. Rev. Genet. V. 52. P. 21–41.
- Burggren W., 2016. Epigenetic inheritance and its role in evolutionary biology: re-evaluation and new perspectives // Biology. V. 5. № 24. P. 2–22.
- Cohen J., 1992. A power primer // Psychological Bulletin. V. 112. № 1. P. 155–159. https://doi.org/10.1037/0033-2909.112.1.155
- Cornwell W. K., Schwilk D. W., Ackerly D. A., 2006. A trait-based test for habitat filtering: convex hull volume // Ecology. V. 87. P. 1465–1471.
- Deol M. S., Truslove G. M., 1957. Genetical studies on the skeleton of the mouse. XX. Maternal physiology and variation in the skeleton of C57Bl mice // J. Genet. V. 55. P. 288– 312.
- Donelan S. C., Hellmann J. K., Bell A. M., Luttbeg B., John L., Orrock J. L. et al., 2020. Transgenerational plasticity in human-altered environments // Trends in Ecology and Evolution. V. 35. № 2. P. 115–124.
- Drake A. G., Klingenberg C. P., 2010. Large-scale diversification of skull shape in domestic dogs: disparity and modularity // American Naturalist. V. 175. № . 3. P. 289– 301.
- Gálvez-López E., Kilbourne B., Cox P. G., 2021. Cranial shape variation in mink: Separating two highly similar species // J. of Anatomy. V. 240. № 2. P. 210–225. https://doi.org/10.1111/joa.13554
- Grewal M. S., 1962. The rate of genetic divergence in the C57BL strain of mice // Genet. Res., Cambr. V. 3. P. 226–237.
- Grüneberg H., 1952. Genetical studies on the skeleton of the mouse. IV. Quasi-continious variations // J. Genet. V. 51. P. 95–114.
- Grüneberg H., 1952a. The genetics of the mouse // Bibl. Ge-net. V. 15. 650 p.
- Grüneberg H., 1963. The Pathology of Development. Oxford: Blackwell. 309 p.
- Hammer Q., Harper D. A.T., Ryan P. D., 2001. PAST: Paleontological Statistics software package for education and data analysis // Palaeontologia Electronica. V. 4. № .1. P. 1–9. (program)
- Hartman S. E., 1980. Geographical variation analysis of Dipodomys ordii using nonmetric cranial traits // Journal of Mammalogy. V. 61. P. 436–448.
- Jablonka E., Raz G., 2009. Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution // Qvart. Rev. Biol. V.84. P. 131–176.
- Jolliffe I. T., 1986. Principal Component Analysis. New York– Berlin: Springer-Verlag. 487 p.
- Kryštufek B., 1990. Nonmetric cranial variation and divergence of European sousliks (Citellus) from Yugoslavia (Rodentia. Sciuridae) // Boll. Zool. V. 57. P. 351–355.
- Kruskal J. B., 1964. Non-metric multidimensional scaling; a numerical method // Psychometrika. V. 29. P. 115– 129.
- Kukekova A. V., Johnson J. L., Xiang X., Feng Sh., Liu Sh., Rando H. M. et al., 2018. Red fox genome assembly identifies genomic regions associated with tame and aggressive behaviours // Nature Ecology and Evolution. V. 2. P. 1479– 1491. https://doi.org/10.1038/s41559-018-0611-6
- Loy A., Spinosi O., Cardini R., 2004. Cranial morphology of Martes foina and M. martes (Mammalia, Carnivora, Mustelidae): the role of size and shape in sexual dimorphism and interspecific differentiation // The Italian Journal of Zoology. V. 71. P. 27–35.
- Lynch J. M., Hayden T. J., 1995. Genetic influences on cranial form: variation among ranch and feral American mink Mustela vison (Mammalia: Mustelidae) // Biol. J. of the Linn. Soc. V. 55. P. 293–307.
- Sidorovich V. E., Kruuk H., MacDonald D.W., 1999. Body size, and interactions between European and American mink (Mustela lutreola and M. vison) in Eastern Europe // J. of Zoology. V. 248. P. 521–527.
- Singh N., Albert F. W., Plyusnina I., Trut L., Pӓӓbo S., Harvati K., 2017. Facial shape differences between rats selected for tame and aggressive behaviors // PLoS ONE. V. 12. № 4. P. 1–11. e0175043. https://doi.org/10.1371/journal.pone.0175043
- Sjøvold T., 1977. Non-metrical divergence between skeletal populations. The theoretical foundation and biological importance of C.A.B. Smiths Mean Measure of Divergence // Ossa. V. 4. Suppl.1. P. 1–133.
- Skinner M. K., Gurerrero-Bosagna C., Haque M. M., Nilsson E. E. et al., 2014. Epigenetics and the evolution of Darwin’s Finches // Genome Biol. Evol. V. 6. № 8. P. 1972– 1989.
- Smith M. F., 1981. Relationships between genetic variability and niche dimensions among coexisting species of Peromyscus // Journal of Mammalogy. V. 62. P. 273–285.
- Tamlin A. L., Bowman J., Hackett D. F., 2009. Separating wild from domestic American mink Neovison vison based on skull morphometrics // Wildlife Biol. V. 15. № 3. Р. 266– 277.
- Ulevičius A., Sidorovich V., Lauzhe G., 2001. Specificity of non-metric parameters of American mink (Mustela vison) populations in relation to habitat differences in Belorus // Mammalian Biol. V. 6. P. 35–47.
- Vasil’ev A.G., 2021. The Concept of Morphoniche in Evolutionary Ecology // Russian Journal of Ecology. V. 52. № 3. P. 173–187.
- Ventura J.. Sans-Fuentes M.A., 1997. Geographic variation and divergence in nonmetric cranial traits of Arvicola (Mammalia, Rodentia) in South-Western Europe // Zeitschrift für Säugetierkunde. V. Bd. 62. S. 99– 107.
- Wójcik A. M., Polly P. D., Sikorsky M. D., Wójcik J. M., 2006. Selection in a cycling population: differential response among skeletal traits // Evolution. V. 60. № 9. P. 1925– 1935.
- Wójcik J. M., Polly P. D., Wójcik A. M., Sikorski M. D., 2007. Epigenetic variation of the common shrew, Sorex araneus, in different habitats // Russian J. of Theriology. V. 6. № 1. P. 43–49.
- Waddington C. H., 1957. The strategy of gene. London: Allen and Unwin. 340 p.
- Wiig O., Andersen T., 1988. Non-metrical variation in the skull of Norwegian lynx // Acta Theriologica. V. 33. Fasc. 1–11. P. 3–20.
补充文件
