Stress in speckled ground squirrels (Spermophilus Suslicus Güld. 1770) relocated from a natural population to a semi-free outdoor enclosure

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using a non-invasive approach, changes in the level of physiological stress in speckled ground squirrels (Spermophilus suslicus) relocated from a natural population to an outdoor enclosure were assessed. The enclosure of 0.16 ha in area provided ground squirrels with natural conditions and resources and was protected against predators. First, using the physiological test with ACTH injection, we validated a commercial ELISA kit for cortisol in blood serum (OOO XEMA, RF) for measuring a glucocorticoid response in fecal samples as an indicator of individual stress level. We collected faeces from ground squirrels immediately after capture in nature (to characterize a basal level of stress in the donor population), after transportation before release to the outdoor enclosure, three days after release, and after one month, before hibernation. Three days after relocation, the stress level in speckled ground squirrels was significantly lower than after transportation and did not differ significantly from the initial level in the donor population. The absence of a body mass loss in young animals after the relocation, the successful accumulation of fat before hibernation, and the high overwinter survival rate (72.5%) indicate the successful adaptation of speckled ground squirrels to a novel environment.

Full Text

Restricted Access

About the authors

O. N. Shekarova

A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences

Email: krogovin@yandex.ru
Russian Federation, Moscow, 119071

L. E. Savinetskaya

A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences

Email: krogovin@yandex.ru
Russian Federation, Moscow, 119071

O. A. Burkanova

FSBО “State Nature Reserve “Voroninsky”

Email: krogovin@yandex.ru
Russian Federation, Tambov Region, 393310

E. N. Surkova

A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences

Email: krogovin@yandex.ru
Russian Federation, Moscow, 119071

A. V. Tchabovsky

A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences

Email: krogovin@yandex.ru
Russian Federation, Moscow, 119071

K. A. Rogovin

A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences

Author for correspondence.
Email: krogovin@yandex.ru
Russian Federation, Moscow, 119071

References

  1. Бабицкий А.Ф., Чабовский А.В., Савинецкая Л.Е., 2006. Плата за размножение у самок крапчатого суслика (Spermophilus suslicus Giild., 1770) // Бюллетень Московского общества испытателей природы. Отдел биологический. Т. 111. № 5. С. 80–84.
  2. Брандлер О.В., 2021. Крапчатый суслик Spermophilus suslicus Guldenstadt, 1770 // Красная книга Российской Федерации. С. 968–970.
  3. Бурканова О.А., Чабовский А.В., Сапельников С.Ф., Сапельникова И.И., Батова О.Н., Скобеев С.В., Савинецкая Л.Е., Шекарова О.Н., 2024. Крапчатый суслик (Spermophilus suslicus Güld., 1770) возвращается в Тамбовскую область (организация Центра сохранения и реинтродукции крапчатого суслика в Воронинском заповеднике) // Материалы XIII Всероссийского популяционного семинара с международным участием памяти Н.В. Глотова (к 85-летию со дня рождения) «Проблемы популяционной биологии» (Нижний Тагил, 9–11 апреля 2024 года). В печати.
  4. Герлинская Л.А., Мошкин М.П., Евсиков В.И., 1993. Методические подходы к оценке стрессированности диких млекопитающих // Экология. № 6. С. 97– 100.
  5. Загороднюк И., Дикий И., Сребродольская Е., 2005. Современное распространение и ретроспективный анализ ареала крапчатого суслика (Spermophilus suslicus) на западе Украины // Суслики Евразии (Роды Spermophilus, Spermophilopsis). М.: Товарищество научных изданий КМК. С. 37–39.
  6. Калабухов Н.И., 1985. Спячка млекопитающих. М.: Наука. С. 1–258.
  7. Колосова И.Е., Роговин К.А., Мошкин М.П., 2008. Возможности и ограничения неинвазивной оценки уровня стресса на основе определения глюкокортикоидов в фекалиях большой песчанки (Rhombomys opimus) // Зоологический журнал. Т. 87. № 1. С. 104–113.
  8. Лобков В.А., 1999. Крапчатый суслик Северо-Западного Причерноморья: биология, функционирование популяций. Одесса: Астропринт. 272 с.
  9. Лобков В.А., 2006. Экологические причины изменений численности и распространения крапчатого суслика Spermophilus suslicus (Giildehsta’dt, 1770) // Бюллетень Московского общества испытателей природы. Отдел биологический. Т. 111. № 5. С. 59–64.
  10. Павлова Е.А., 1951. Суслик. Библиотека промысл. охотника. М.: Заготиздат. 80 с.
  11. Павлова Е.В., Найденко С.В., 2008. Неинвазивный мониторинг глюкокортикоидов в экскрементах дальневосточного лесного кота (Prionailurus bengalensis euptilurus) // Зоологический журнал. Т. 87. № 11. С. 1375–1381.
  12. Пиванова С.В., Шубина Ю.Э., 2011. Экологические особенности локальной популяции крапчатого суслика Spermophilus suslicus (Guldenstaedt 1770), населяющей городское кладбище // Региональные геосистемы. Т. 14. С. 134–140.
  13. Проявка С.В., Шубина Ю.Э., Савинецкая Л.Е., Шекарова О.Н., 2017. Морфологическая характеристика крапчатого суслика Spermophilus suslicus Центральной части европейской России // Известия высших учебных заведений. Поволжский регион. Естественные науки. Т. 2. С. 3–10.
  14. Роговин К.А., Найденко С.В., 2010. Неинвазивная оценка стрессированности рыжих полевок (Myodes glareolus, Rodentia, Cricetidae) методом твердофазного иммуноферментного анализа (ELISA) // Зоологический журнал. Т. 89. № 11. С. 1380–1386.
  15. Русин М.Ю., 2013. Редкие и исчезающие виды грызунов степной зоны Восточной Украины. Автореф. дис. … канд. биол. наук. Киев. 22 с.
  16. Сапельников С.Ф., Сапельникова И.И., 2021. Ретроспективный анализ состояния популяций крапчатого суслика (Spermophilus suslicus Güldenstädt, 1770) в Центральном Черноземье с сопредельными территориями и возможные пути сохранения вида // Полевой журнал биолога. Т. 3. № 2. С. 167– 212.
  17. Смирин В.М., 2008. Портреты степных зверей Европы и Северной Азии (Сост. А.И. Олексенко, А.В. Зименко, П.П. Дмитриев, Е.В. Зубчанинова). М.: Изд-во Центра охраны дикой природы. 92 с.
  18. Титов С.В., 2001. Современное распространение и изменение численности крапчатого суслика в восточной части ареала // Зоологический журнал. Т. 80. № 2. С. 230–235.
  19. Чабовский А.В., Бабицкий А.Ф., Савинецкая Л.Е., 2005. Регуляция годового цикла и смертности в популяции крапчатого суслика на севере ареала в зависимости от плотности // Доклады Академии наук. Т. 405. № 4. С. 571–573.
  20. Шекарова О.Н., Савинецкая Л.Е., 2019. Крапчатый суслик в Московской области (ретроспективный анализ) // В кн.: Млекопитающие России: фаунистика и вопросы териогеографии. Материалы конференции (Ростов-на-Дону, 17–19 апреля 2019 г.) М.: Товарищество научных изданий КМК. С. 321–324.
  21. Шилова С.А., Неронов В.В., Шекарова О.Н., Савинецкая Л.Е., 2010. Динамика поселений крапчатого суслика (Spermophilus suslicus Guld., 1770) на северной границе ареала // Известия Российской академии наук. Серия биологическая. № 5. С. 619–624.
  22. Шокало С.И., 2019. О состоянии крапчатого суслика (Spermophylus suslicus) в Центральной Беларуси. C. 208–215. / Проблемы зоокультуры и экологии. Вып. 3. Ред. Остапенко В.А. // Сборник научных трудов. М.: ГАУ «Московский зоопарк»; ЕАРАЗА; СОЗАР: Изд. «ЗооВетКнига». 264 с.
  23. Щипанов Н.А., 1987. Универсальная живоловка для мелких млекопитающих // Зоологический журнал. Т. 66. № 5. С. 759–761.
  24. Abramchuk A., Shokalo S., Yankevich Y., 2021. The speckled ground squirrel (Spermophilus suslicus) in Belarus: new localities, old threats, and prospects of conservation // Theriologia Ukrainica. V. 21. P. 84–90.
  25. Aschauer A., Hoffmann I.E., Millesi E., 2006. Endocrine profiles and reproductive output in European ground squirrels after unilateral ovariectomy // Animal Reproduction Science. V. 92. № 3–4. P. 392–400.
  26. Byrne K.A., Peters C., Willis H.C., Phan D., Cornwall A., Worthy D.A., 2020. Acute stress enhances tolerance of uncertainty during decision-making // Cognition. V. 205. P. 104448.
  27. Bosson C.O., Palme R., Boonstra R., 2013. Assessing the impact of live-capture, confinement, and translocation on stress and fate in eastern gray squirrels // Journal of Mammalogy. V. 94. № 6. P. 1401–1411.
  28. Boswell T., Woods S.C., Kenagy G.J., 1994. Seasonal changes in body mass, insulin, and glucocorticoids of free-living golden-mantled ground squirrels // General and Comparative Endocrinology. V. 96. P. 339–346.
  29. Brenner M., Turrini T., Millesi E., 2017. Stress load in European ground squirrels living in habitats with high and low human impact: Stress load in European ground squirrels living in habitats with high and low human impact // Journal of Wildlife and Biodiversity. V. 1. № 2. P. 94–109.
  30. Carere C., Groothuis T.G.G., Möstl E., Daan S., Koolhaas J.M., 2003. Fecal corticosteroids in a territorial bird selected for different personalities: daily rhythm and the response to social stress // Hormones and Behavour. V. 43. P. 540–548.
  31. Cockrem J.F., 2013. Individual variation in glucocorticoid stress responses in animals // General and Comparative Endocrinology. V. 181. P. 45–58.
  32. Delehanty B., Boonstra R., 2012. The benefits of baseline glucocorticoid measurements: maximal cortisol production under baseline conditions revealed in male Richardon’s ground squirrels (Urocitellus richardsonii) // General and Comparative Endocrinology. V. 178. № 3. P. 470–476.
  33. Dickens M.J., Delehanty D.J., Romero L.M., 2009. Stress and translocation: alterations in the stress physiology of translocated birds // Proceedings of the Royal Society B: Biological Sciences. V. 276. № 1664. P. 2051–2056.
  34. Dickens M.J., Delehanty D.J., Romero L.M., 2010. Stress: an inevitable component of animal translocation // Biological Conservation. V. 143. № 6. P. 1329–1341.
  35. Dingemanse N.J., Dochtermann N.A., 2013. Quantifying individual variation in behaviour: mixed-effect modelling approaches // Journal of Animal Ecology. V. 82. P. 39–54.
  36. Gedeon C.I., Boross G., Németh A., Altbäcker V., 2012. Release site manipulation to favour European ground squirrel Spermophilus citellus translocations: translocation and habitat manipulation // Wildlife Biology. V. 18. № 1. P. 97–104.
  37. Gedeon C.I., Váczi O., Koósz B., Altbäcker V., 2011. Morning release into artificial burrows with retention caps facilitates success of European ground squirrel (Spermophilus citellus) translocations // European Journal of Wildlife Research. V. 57. P. 1101–1105.
  38. Gondek A., 2004. Sytuacja susla perelkowanego w Polsce – zagrożenia i program ochrony // Biuletyn Monitoringu Przyrody. № 1/2004. Р. 21–27.
  39. Goymann W., Mostl E., Van’t Hof T., East M.L., Hofer H., 1999. Nonivasive fecal monitorng of glucocorticoids in spotted hyenas, Crocuta crocuta // General and Comparative Endocrinology. V. 114. № 3. P. 340–348.
  40. Kachamakova M., Koshev Y., Millesi E., 2021. Resident European ground squirrels exhibit higher stress levels than translocated individuals after conservation reinforcement // Mammalian Biology. V. 101. P. 127–136.
  41. Koshev Y., Kachamakova M., Arangelov S., Ragyov D., 2019. Translocations of European ground squirrel (Spermophilus citellus) along altitudinal gradient in Bulgaria–an overview // Nature Conservation. V. 35. P. 63–95.
  42. Letty J., Marchandeau S., Aubineau J., 2007. Problems encountered by individuals in animal translocations: lessons from field studies // Ecoscience. V. 14. P. 259–271.
  43. Mateo J.M., 2008. Inverted-U shape relationship between cortisol and learning in ground squirrels // Neurobiology of Learning and Memory. V. 89. № 4. P. 582–590.
  44. Mateo J.M., Cavigelli S.A., 2005. A validation of extraction methods for noninvasive sampling of glucocorticoids in free-living ground squirrels // Physiological and Biochemical Zoology. V. 78. № 6. P. 1069–1084.
  45. Matějů J., 2008. Ecology and space use in a relict population of the European ground squirrel (Spermophilus citellus) at the north-western edge of its distribution range // Lynx. V. 39. № 2. P. 263–276.
  46. Matějů J., Říčanová Š., Poláková S., Ambros M., Kala B., Matějů K., Kratochvíl L., 2012. Method of releasing and number of animals are determinants for the success of European ground squirrel (Spermophilus citellus) reintroductions // European Journal of Wildlife Research. V. 58. P. 473–482.
  47. Möstl E., Palme R., 2002. Hormones as indicators of stress // Domestic animals endocrinology. V. 23. № 1. P. 67–74.
  48. Navarro-Castilla Á., Garrido M., Hawlena H., Barja I., 2021. Non-invasive monitoring of adrenocortical activity in three sympatric desert gerbil species // Animals. V. 11. № 1. P. 75.
  49. Neuhaus P., Pelletier N., 2001. Mortality in relation to season, age, sex, and reproduction in Columbian ground squirrels (Spermophilus columbianus) // Canadian Journal of Zoology. V. 79. P. 465–470.
  50. Nunes S., Pelz K.M., Muecke E.M., Holekamp K.E., Zucker I., 2006. Plasma glucocorticoid concentrations and body mass in ground squirrels: seasonal variation and circannual organization // General and Comparative Endocrinology. V. 146. № 2. P. 136–143.
  51. Palme R., Rettenbacher S., Touma C., El-Bahr S.M., Mostl E., 2005. Stress hormones in mammals and birds. Comparative aspect regarding metabolism, excretion, and noninvasive measurement in fecal samples // Annals of the New York Academy of Sciences journal. V. 1040. № 1. P. 162–171.
  52. Palme R., Touma C., Arias N., Dominchin M.F., Lepschy M., 2013. Steroid extraction: get the best out of faecal samples // Wiener Tierarztliche Monatsschrift. № 100. P. 238–246.
  53. Palme R., 2019. Non-invasive measurement of glucocorticoids: Advances and problems // Physiology and Behavior. № 199. P. 229–243.
  54. Pribbenow S., Jewgenow K., Vargas A., Serra R., Naidenko S., Dehnhard M., 2014. Validation of an enzyme immunoassay for the measurement of faecal glucocorticoid metabolites in Eurasian (Lynx lynx) and Iberian lynx (Lynx pardinus) // General and Comparative Endocrinology. V. 206. P. 166–177.
  55. Qu J., Fletcher Q.E., Réale D., Li W., Zhang Y., 2018. Independence between coping style and stress reactivity in plateau pika // Physiology and Behavior. V. 197. P. 1–8.
  56. Rich E.L., Romero L.M., 2005. Exposure to chronic stress downregulates corticosterone responses to acute stressors //American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. V. 288. № 6. P. R1628-R1636.
  57. Sakaguchi E.I., Itoh H., Uchida S., Horigome T., 1987. Comparison of fibre digestion and digesta retention time between rabbits, guinea-pigs, rats and hamsters // British Journal of Nutrition. V. 58. № 1. P. 149–158.
  58. Sheriff M.J., Krebs C.J., Boonstra R., 2010. Assessing stress in animal populations: do fecal and plasma glucocorticoids tell the same story? // General and comparative endocrinology. V. 166. № 3. P. 614–619.
  59. Sheriff M.J., Wheeler H., Donker S.A., Krebs C.J., Palme R., Hik D.S., Boonstra R., 2012. Mountain‐top and valley‐bottom experiences: the stress axis as an integrator of environmental variability in arctic ground squirrel populations // Journal of Zoology. V. 287. № 1. P. 65–75.
  60. Surkova E.N., Savinetskaya L.E., Khropov I.S., Tcha-bovsky A.V., 2024. Flexible males, reactive females: faecal glucocorticoid metabolites indicate increased stress in the colonist population, damping with time in males but not in females // Journal of Comparative Physiology B.P. 1–10.
  61. Teixeira C.P., De Azevedo C.S., Mendl M., Cipreste C.F., Young R.J., 2007. Revisiting translocation and reintroduction programmes: the importance of considering stress // Animal behaviour. V. 73. № 1. P. 1–13.
  62. Titov S.V., 2003. Juvenile dispersal in the colonies of Spermophilus major and S. suslicus ground squirrels // Russian Journal of Ecology. V. 34. P. 255–260.
  63. Touma C., Palme R., 2005. Measuring fecal glucocorticoid metabolites in mammals and birds: the importance of validation // Annals of the New York Academy of Sciences. V. 1046. № 1. P. 54–74.
  64. Ziółek M., Kozieł M., Czubla P., 2017. Zmiany liczebności populacji susła perełkowanego Spermophilus suslicus w polsce wschodniej // Polish Journal of Natural Science. V. 32. № 1. P. 91–104.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Enclosure in the Voroninsky Nature Reserve (photo by S. V. Pavlova).

Download (332KB)
3. Fig. 2. Dynamics of the IMG level in five speckled ground squirrels used to validate the method for determining the IMG level in feces. The time interval included capture in the donor population (background stress level), transportation, keeping in cages for the next three days (from 07.07.2023 to 09.07.2023) and release into the enclosure in the morning on the fourth day. The ordinal number of the day is given in brackets. A – males, B – females. The abnormally low IMG value in the sample from male 39m, taken on 07.07.2023 at 16:00, is shown in a separate circle and was not included in the subsequent analysis.

Download (155KB)
4. Fig. 3. Validation of the method for noninvasive assessment of IMG levels in feces of five spotted ground squirrels by assessing the physiological response to an adrenocorticotropic hormone injection. Each animal was injected with ACTH one day after the ground squirrels were transported to the release site at 8 a.m. on July 7, 2023. The mean IMG concentrations and their errors are shown. Identical Latin letters indicate the absence of significant differences (p > 0.05, Tukey test).

Download (97KB)
5. Fig. 4. Body weight of yearlings of spotted ground squirrels (mean ± standard error) captured in the donor population (1), three days after transportation and release (3) and before hibernation (4). Result of using the Mixed General Linear Model with the individual number as a random effect and the stage as a categorical fixed effect. Identical Latin letters indicate the absence of significant differences (p > 0.05, Tukey's test); n is the sample size.

Download (60KB)
6. Fig. 5. The level of IMG (mean ± error) at different stages of the experiment in speckled ground squirrels taken from the donor population: A – all individuals (F3, 32 = 4.1, p = 0.014), B – yearlings (F3, 21 = 6.3, p = 0.003). 1 – immediately after capture (background stress level), 2 – after transportation, 3 – three days after release into the enclosure, 4 – before hibernation. The result of using a mixed general linear model with the individual number as a random factor and the stage as a categorical fixed effect is shown. The same Latin letters indicate the absence of significant differences (p > 0.05, Tukey's test); n is the sample size.

Download (108KB)

Copyright (c) 2024 Russian Academy of Sciences