Effect of Fluorine on Thermoluminescence in LiMgPO4
- Авторлар: Kalinkin M.O.1, Akulov D.A.1, Gyrdasova O.I.1, Abashev R.M.1,2, Surdo A.I.1, Medvedeva N.I.1, Kellerman D.G.1
- 
							Мекемелер: 
							- Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences
- Ural Federal University named after the first President of Russia B.N. Yeltsin
 
- Шығарылым: Том 68, № 2 (2023)
- Беттер: 265-270
- Бөлім: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
- URL: https://cijournal.ru/0044-457X/article/view/665312
- DOI: https://doi.org/10.31857/S0044457X22601328
- EDN: https://elibrary.ru/LOUCIV
- ID: 665312
Дәйексөз келтіру
Аннотация
Fluorine-doped lithium magnesium phosphate has been studied for the first time. It has been shown that fluorine significantly enhances the intensity of thermally stimulated luminescence. To find the preferred positions of fluorine and structural distortions caused by aliovalent substitution, ab initio calculations have been performed, which demonstrate that fluorine is not included into the (PO4)3– anion; rather, it promotes the formation of clusters simultaneously containing lithium and fluorine ions.
Негізгі сөздер
Авторлар туралы
M. Kalinkin
Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences
														Email: kalinkin@ihim.uran.ru
				                					                																			                												                								620990, Yekaterinburg, Russia						
D. Akulov
Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences
														Email: kalinkin@ihim.uran.ru
				                					                																			                												                								620990, Yekaterinburg, Russia						
O. Gyrdasova
Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences
														Email: kalinkin@ihim.uran.ru
				                					                																			                												                								620990, Yekaterinburg, Russia						
R. Abashev
Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences; Ural Federal University named after the first President of Russia B.N. Yeltsin
														Email: kalinkin@ihim.uran.ru
				                					                																			                												                								620990, Yekaterinburg, Russia; 620002, Yekaterinburg, Russia						
A. Surdo
Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences
														Email: kalinkin@ihim.uran.ru
				                					                																			                												                								620990, Yekaterinburg, Russia						
N. Medvedeva
Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences
														Email: kalinkin@ihim.uran.ru
				                					                																			                												                								620990, Yekaterinburg, Russia						
D. Kellerman
Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences
							Хат алмасуға жауапты Автор.
							Email: kalinkin@ihim.uran.ru
				                					                																			                												                								620990, Yekaterinburg, Russia						
Әдебиет тізімі
- Abdel Rahman R.O., Hung Y.T. // Water. 2020. V. 12. P. 19. https://doi.org/10.3390/w12010019
- Pyshkina M.D., Nikitenko V.O., Zhukovsky M.V., Ekidin A.A. // AIP Conf. Proc. 2019. V. 2174. P. 020158. https://doi.org/10.1063/1.5134309
- Noor N.M., Fadzil M.S.A., Ung N. et al. // Radiat. Phys. Chem. 2016. V. 126. P. 56. https://doi.org/10.1016/j.radphyschem.2016.05.001
- Rivera T. // Appl. Radiat. Isot. 2012. V. 71. P. 30. https://doi.org/10.1016/j.radphyschem.2016.05.001
- Sears D.W., Sears H., Sehlke A., Hughes S.S. // J. Volcanol. Geotherm. Res. 2018. V. 349. P. 74. https://doi.org/10.1016/j.jvolgeores.2017.09.022
- Miyahara M.M., Sugi E., Katoh T. et al. // Radiat. Phys. Chem. 2012. V. 81. P. 705. https://doi.org/10.1016/j.jvolgeores.2017.09.022
- Ivanov S.A., Stash A.I., Bush A.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 588. https://doi.org/10.1134/S0036023622050096
- Sidorov A.I., Kirpichenko D.A., Yurina U.V., Podsvi-rov O.A. // Glass Phys. Chem. 2021. V. 47. P. 118. https://doi.org/10.1134/S1087659621020140
- Antonov-Romanovsky V.V. // J. Phys. Radium. 1956. V. 17. P. 694. https://hal.archives-ouvertes.fr/jpa-00234423
- Menon S.N., Singh A.K., Kadam S. et al. // J. Food Proc. Preserv. 2019. V. 43. P. 13891. https://doi.org/10.1111/jfpp.13891
- Guo J., Tang Q., Zhang C. et al. // J. Rare Earths. 2017. V. 35. P. 525. https://doi.org/10.1016/S1002-0721(17)60943-8
- Gieszczyk W., Bilski P., Kłosowski M. et al. // Radiat. Measur. 2018. V. 113. P. 14. https://doi.org/10.1016/j.radmeas.2018.03.007
- Palan C.B., Bajaj N.S., Soni A., Omanwar S.K. // Bull. Mater Sci. 2016. V. 39. P. 1157. https://doi.org/10.1007/s12034-016-1261-4
- Dhabekar B., Menon S.N., Raja E.A. et al. // Nucl. Instr. Methods Phys. B. 2011. V. 269. P. 1844. https://doi.org/10.1016/j.nimb.2011.05.001
- Bajaj N.S., Palan C.B., Koparkar K.A. et al. // J. Lumines. 2016. V. 175. P. 9. https://doi.org/10.1016/j.jlumin.2016.02.003
- Chougaonkar M.P., Kumar M., Bhatt B.C. // Int. J. Lum. Appl. 2012. V. 2. P. 194.
- Keskin I.Ç., Türemis M., Katı M.I. et al. // J. Lumines. 2020. V. 225. P. 117276. https://doi.org/10.1016/j.jlumin.2020.117276
- Kellerman D.G., Kalinkin M.O., Abashev R.M. et al. // Phys. Chem. Chem. Phys. 2020. V. 22. P. 27632. https://doi.org/10.1039/d0cp05185c
- Kalinkin M.O., Akulov D.A., Medvedeva N.I. et al. // Mater. Today Com. 2022. V. 31. P. 103346. https://doi.org/10.1016/j.mtcomm.2022.103346
- Modak P., Modak B. // Phys. Chem. Chem. Phys. 2020. V. 22. P. 16244. https://doi.org/10.1039/D0CP02425B
- Kellerman D.G., Medvedeva N.I., Kalinkin M.O. et al. // J. Alloys Compd. 2018. V. 766. P. 626. https://doi.org/10.1016/j.jallcom.2018.06.328
- Kalinkin M.O., Abashev R.M., Zabolotskaya E.V. et al. // Mater Res. Express. 2019. V. 6. P. 046206. https://doi.org/10.1088/2053-1591/aafd3e
- Peng Y.M., Su Y.-K., Yang R.-Y. // Mater. Res. Bull. 2013. V. 48. P. 1946. https://doi.org/10.1016/j.materresbull.2013.01.039
- Su Y.-K., Peng Y.M., Yang R.-Y., Chen J.-L. // Opt. Mater. 2012. V. P. 1598. https://doi.org/10.1016/j.optmat.2012.03.019
- Kresse G., Joubert D. // Phys. Rev. B. 1999. V. 59. P. 1758. https://doi.org/10.1103/PhysRevB.59.1758
- Kresse G., Furthmuller J. // Phys. Rev. B. 1996. V. 54. P. 11169. https://doi.org/10.1103/PhysRevB.54.11169
- Perdew J.P., Burke S., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. P. 3865. https://doi.org/10.1103/PhysRevLett.77.3865
- Monkhorst H.J., Pack J.D. // Phys. Rev. B: Solid State. 1976. V. 13. P. 5188. https://doi.org/10.1103/PhysRevB.13.5188
- Ben Yahia H., Shikano M., Takeuch T. et al. // J. Mater. Chem. A. 2014. V. 2. P. 5858. https://doi.org/10.1039/c3ta15264b
- Berger T., Hajek M. // Radiat. Measur. 2008. V. 43. P. 146. https://doi.org/10.1016/j.radmeas.2007.10.029
- Kumar V., Nagarajan R. // Chem. Phys. Lett. 2012. V. 530. P. 98. https://doi.org/10.1016/j.cplett.2012.02.021
- Hanic F., Handlovic M., Burdova K., Majling J. // J. Crystallogr. Spectrosc. Res. 1982. V. 12. P. 99. https://doi.org/10.1007/BF01161009
- Zimina G.V., Tsygankova M., Sadykova M. et al. // MRS Advances. 2018. V. 3. P. 1309. https://doi.org/10.1557/adv.2017.622
Қосымша файлдар
 
				
			 
						 
					 
						 
						 
						

 
  
  
  Мақаланы E-mail арқылы жіберу
			Мақаланы E-mail арқылы жіберу 
 Ашық рұқсат
		                                Ашық рұқсат Рұқсат берілді
						Рұқсат берілді Рұқсат ақылы немесе тек жазылушылар үшін
		                                							Рұқсат ақылы немесе тек жазылушылар үшін
		                                					



