Spectral properties of tolan and its supramolecular complexes in solution and silicate hydrogel

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

The complexation process of tolane and α-cyclodextrin in water, aqueous-ethanol solution and silicate hydrogel based on tetrakis(2 hydroxyethyl)orthosilicate was studied. The complex formation in solutions were confirmed by electron and 1H NMR spectroscopy, and the stability constant of the complex was determined using spectrofluorimetric titration (lgK1:1 = 1.5). The preservation of the inclusion complex during the preparation of the gel was confirmed by electron spectroscopy.

Толық мәтін

Рұқсат жабық

Авторлар туралы

G. Novitskii

Photochemistry Center of the Russian Academy of Sciences, Federal Research Center “Crystallography and Photonics” – National Research Center “Kurchatov Institute”

Хат алмасуға жауапты Автор.
Email: georg.nov97@gmail.com
Ресей, Moscow, 119421

A. Medvedeva

Photochemistry Center of the Russian Academy of Sciences, Federal Research Center “Crystallography and Photonics” – National Research Center “Kurchatov Institute”

Email: georg.nov97@gmail.com
Ресей, Moscow, 119421

A. Koshkin

Photochemistry Center of the Russian Academy of Sciences, Federal Research Center “Crystallography and Photonics” – National Research Center “Kurchatov Institute”

Email: georg.nov97@gmail.com
Ресей, Moscow, 119421

A. Vedernikov

Photochemistry Center of the Russian Academy of Sciences, Federal Research Center “Crystallography and Photonics” – National Research Center “Kurchatov Institute”

Email: georg.nov97@gmail.com
Ресей, Moscow, 119421

N. Lobova

Photochemistry Center of the Russian Academy of Sciences, Federal Research Center “Crystallography and Photonics” – National Research Center “Kurchatov Institute”; Moscow Institute of Physics and Technology

Email: georg.nov97@gmail.com
Ресей, Moscow, 119421; Dolgoprudny, 141701

Әдебиет тізімі

  1. Wilson A. J. // Annu. Rep. Prog. Chem., Sect.B: Org. 2007. V. 103. P. 174. https://doi.org/10.1039/b614407c
  2. Pistolis G., Balomenou I. // J. Phys. Chem. B 2006. V. 110. № 33. P. 16428. https://doi.org/10.1021/jp062003p
  3. Tian T., Wang Y., Zhang W. et al. // ACS Photonics 2020. V. 7. № 8. P. 2132. https://doi.org/10.1021/acsphotonics.0c00602
  4. Connors K.A. // Chem. Rev. 1997. V. 97. № 5. P. 1325. https://doi.org/10.1021/cr960371r
  5. Dodziuk H. // Molecules with Holes – Cyclodextrins, 2006. https://doi.org/10.1002/3527608982.ch1
  6. Walter G., Coche A. // Nucl. Instruments Methods 1963. V. 23. № C. P. 147. https://doi.org/10.1016/0029-554X(63)90027-2
  7. Aurisicchio C., Ventura B., Bonifazi D. et al. // J. Phys. Chem. C 2009. V. 113. № 41. P. 17927. https://doi.org/10.1021/jp9053988
  8. Menning S., Kra M., Coombs B.A. et al. // J Am Chem Soc 2013. V. 135. P. 2160. https://doi.org/10.1021/ja400416r
  9. Saifi A., Joseph J.P., Singh A.P. et al. // ACS Omega 2021. V. 6. № 7. P. 4776. https://doi.org/10.1021/acsomega.0c05684
  10. Asiri A.M., El-Daly S.A., Khan S.A. // Spectrochim. Acta – Part A Mol. Biomol. Spectrosc. 2012. V. 95. P. 679. https://doi.org/10.1016/j.saa.2012.04.077
  11. Al-Sherbini E.S.A.M. // Microporous Mesoporous Mater. 2005. V. 85. № 1–2. P. 25. https://doi.org/10.1016/j.micromeso.2005.06.016
  12. Dolinina E.S., Parfenyuk E.V. // Russ. J. Inorg. Chem. 2022. V. 67. № 3. P. 401. https://doi.org/10.1134/S0036023622030068
  13. Buslaeva T.M., Ehrlich, G.V., Volchkova E.V. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1191. https://doi.org/10.1134/S0036023622080058
  14. Ooya T., Kobayashi N., Ichi T. et al. // Sci. Technol. Adv. Mater. 2003. V. 4. № 1. P. 39. https://doi.org/10.1016/S1468-6996(03)00003-2
  15. Koshkin A.V., Aleksandrova N.A., Ivanov D.A. // J. Sol-Gel Sci. Technol. 2017. V. 81. № 1. P. 303. https://doi.org/10.1007/s10971-016-4183-0
  16. Brandhuber D., Torma V., Raab C. et al. // Chem. Mater. 2005. V. 17. № 3. P. 4262. https://doi.org/10.1021/cm048483j
  17. Castellano S., Lorenc J. // J. Phys. Chem. 1965. V. 69. № 10. P. 3552. https://doi.org/10.1021/j100894a051
  18. Armitage J.B., Entwistle N., Jones E.R.H.W.M.C. // J. Chem. Soc. 1954. V. 147. № 111. P. 147. https://doi.org/10.1039/JR9540000147
  19. Du H., Fuh R.C.A., Li J. et al. // Photochem. Photobiol. 1998. V. 68. № 2. P. 141. https://doi.org/10.1111/j.1751-1097.1998.tb02480.x
  20. Gans P., Sabatini A., Vacca A. // Talanta 1996. V. 43. № 10. P. 1739. https://doi.org/10.1016/0039-9140(96)01958-3
  21. Li Z., Sun S., Liu F. et al. // Dye. Pigment. 2012. V. 93. № 1–3. P. 1401. https://doi.org/10.1016/j.dyepig.2011.10.005
  22. Shchipunov Y.A., Karpenko T.Y., Bakunina I.Y. et al. // J. Biochem. Biophys. Methods 2004. V. 58. № 1. P. 25. https://doi.org/10.1016/S0165-022X(03)00108-8
  23. Koshkin A.V., Medvedeva A.A., Lobova N.A. // High Energy Chem. 2019. V. 53. № 6. P. 444. https://doi.org/10.1134/S0018143919060110

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Hydrolysis of THEOS.

Жүктеу (30KB)
3. Fig. 2. Polycondensation reaction.

Жүктеу (37KB)
4. Fig. 3. Formation of a three-dimensional gel matrix.

Жүктеу (76KB)
5. 4. 1H NMR spectrum of THEOS.

Жүктеу (160KB)
6. 5. Structural formulas of tolan (a) and α-cyclodextrin (b) molecules.

Жүктеу (78KB)
7. 6. The PMR spectrum of the tolan–α-cyclodextrin mixture in D2O, with an increase in significant peaks in the aromatic region of the spectrum.

Жүктеу (154KB)
8. 7. Changes in the absorption (a) and fluorescence (b, lex = 295 nm) spectra during titration of tolane with a-cyclodextrin solution.

Жүктеу (173KB)
9. 8. Fluorescence spectra of lex = 295 nm tolane and its complexes in solution and gel.

Жүктеу (216KB)
10. Fig. 9. Baseline for the absorption spectrum (a) of the hydrogel obtained by the improved method and the transmission values (b) of the hydrogels obtained at different pH.

Жүктеу (136KB)
11. 10. Fluorescence spectra lex = 295 nm of tolan and its complexes in solution and gel, normalized to the values of maxima.

Жүктеу (261KB)

© Russian Academy of Sciences, 2024