Preparation and investigation of composite based on reduced graphene oxide and Fe3O4 nanoparticles

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Graphene oxide (GO) and composites based on it are often used to produce graphene-like materials by thermal or chemical reduction, and the reduction method strongly affects the properties of the materials. In this study, a new method was proposed to prepare a conductive composite based on reduced graphene oxide (RGO) with magnetite nanoparticles (NPs) with an average diameter of 18 nm dispersed on its surface. The method consisted of treating a GO-based composite with Fe3O4 on the its surface in supercritical isopropanol. The composites based on GO and RGO and magnetite NPs were investigated by FTIR spectroscopy, X-ray diffractive analysis and scanning electron microscopy. It is shown that the sample compact film of the RGO-based composite has specific surface resistivity is 22 Ohm/cm² and saturation magnetisation is 32.3 emu/g.

About the authors

V. R. Ibragimova

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences (IGIC RAS); Department of Materials Science, Lomonosov Moscow State University

Email: Acidladj@mail.ru
Leninskii prospekt, 31, Moscow, 119991 Russia; Leninskie Gory 1, Building 73, Moscow, 119991 Russia

I. V. Sapkov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences (IGIC RAS); Department of Materials Science, Lomonosov Moscow State University; Physics Department, Lomonosov Moscow State University

Email: Acidladj@mail.ru
Leninskii prospekt, 31, Moscow, 119991 Russia; Leninskie Gory 1, Building 73, Moscow, 119991 Russia; Leninskie Gory 1, Building 2, Moscow, 119991 Russia

E. I. Efremova

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences (IGIC RAS); Department of Materials Science, Lomonosov Moscow State University; Lomonosov Moscow State University of Fine Chemical Technologies

Email: Acidladj@mail.ru
Leninskii prospekt, 31, Moscow, 119991 Russia; Leninskie Gory 1, Building 73, Moscow, 119991 Russia; Vernadsky prospect 86, Moscow, 119571 Russia

Z. A. Kudryashova

Lomonosov Moscow State University of Fine Chemical Technologies

Email: Acidladj@mail.ru
Vernadsky prospect 86, Moscow, 119571 Russia

E. G. Rustamova

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences (IGIC RAS); Joint Stock Company “Aviation Electronics and Communication”

Email: Acidladj@mail.ru
Leninskii prospekt, 31, Moscow, 119991 Russia; proezd Entuziastov 15, Building 8А, Moscow, 111024 Russia

D. V. Korolev

The Institute of Problems of Chemical Physics (IPCP)

Email: Acidladj@mail.ru
Academician Semenov prospect 1, Chernogolovka, 142432 Russia

E. I. Kunitsyna

The Institute of Problems of Chemical Physics (IPCP)

Email: Acidladj@mail.ru
Academician Semenov prospect 1, Chernogolovka, 142432 Russia

Y. V. Ioni

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences (IGIC RAS); Lomonosov Moscow State University of Fine Chemical Technologies

Author for correspondence.
Email: Acidladj@mail.ru
Leninskii prospekt, 31, Moscow, 119991 Russia; Vernadsky prospect 86, Moscow, 119571 Russia

References

  1. Chang H. // MRS Bulletin. 2015. V. 40. № 5. P. 445. https://doi.org/10.1557/mrs.2015.93
  2. Wang P., Hu M., Wang H. et al. // Adv. Sci. 2020. V. 7. № 20. P. 2001116. https://doi.org/10.1002/advs.202001116
  3. Corzo D., Tostado-Blázquez G., Baran D. // Front. Electron. 2020. V. 1. https://doi.org/10.3389/felec.2020.594003
  4. Han T.H., Kim H., Kwon S.J. et al. // Mater. Sci. Eng. R.: Rep. 2017. V. 118. P. 1. https://doi.org/10.1016/j.mser.2017.05.001
  5. Feng H., Fang X., Liu X. et al. // Compos. -A: Appl. Sci. Manuf. 2018. V. 109. P. 578. https://doi.org/10.1016/j.compositesa.2018.03.035
  6. Mitin D.M., Pavlov A., Fedorov F.S. et al. // Sens. Actuators, B: Chem. 2024. V. 417. P. 136095. https://doi.org/10.1016/j.snb.2024.136095
  7. Mehmood T., Alotaibi B.M., Alrowaily A.W. et al. // Diam. Relat. Mater. 2025. V. 152. P. 11943. https://doi.org/10.1016/j.diamond.2024.111943
  8. Qi S., Zhang C., Sun M. et al. // Diam. Relat. Mater. 2025. V. 154. P. 112258. https://doi.org/10.1016/j.diamond.2025.112258
  9. Stefan-Henningsen E., Roberts N., Kiani A. // Results Eng. 2025. V. 25. P. 104551. https://doi.org/10.1016/j.rineng.2025.104551
  10. Kang D., Lee M., Lee S.J. et al. // Appl. Surf. Sci. 2023. V. 624. P. 157121. https://doi.org/10.1016/j.apsusc.2023.157121
  11. Mohamed Z., Al-Asbahi B.A., Al-Hada N.M. et al. // Surf. Interfaces. 2025. V. 57. P. 105761. https://doi.org/10.1016/j.surfin.2025.105761
  12. Ivannikova A.S., Ioni Y.V., Sapkov I.V. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 6. P. 787. https://doi.org/10.1134/S0036023623600703
  13. Ioni Y.V., Voronov V.V., Naumkin A.V. et al. // Russ. J. Inorg. Chem. 2015. V. 60. P. 709. https://doi.org/10.1134/S0036023615060066
  14. Bao Z.L., Guo N., Feng J.Y. et al. // Surf. Interfaces. 2025. V. 62. P. 106258. https://doi.org/10.1016/j.surfin.2025.106258
  15. Hilmi D., Zaim S., Mortadi A. et al. // Results Eng. 2024. V. 23. P. 102673. https://doi.org/10.1016/j.rineng.2024.102673
  16. Ioni Y.V., Groshkova Y.A., Buslaeva E.Y. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 950. https://doi.org/10.1134/S0036023621060115
  17. Bhaskaram D.S., Biswal S., Govindaraj G. et al. // J. Alloys Compd. 2025. V. 1010. P. 178129. https://doi.org/10.1016/j.jallcom.2024.178129
  18. Apsey H., Hill D., McCoy T.M. et al. // J. Colloid Interface Sci. 2025. V. 687. P. 189. https://doi.org/10.1016/j.jcis.2025.02.055
  19. Yao F., Li W., SKS S.K. et al. // Chem. Eng. J. 2024. V. 488. P. 150828. https://doi.org/10.1016/j.cej.2024.150828
  20. Liang T., Hou W., Ji J. et al. // Sens. Actuators, А: Phys. 2023. V. 350. P. 144104. https://doi.org/10.1016/j.sna.2022.114104
  21. Ioni Y., Khamidullin T., Sapkov I. et al. // Carbon Lett. 2024. V. 34. № 4. P.1219. https://doi.org/10.1007/s42823-023-00680-3
  22. Massart R. // IEEE Trans. Magn. 1981. V. 17. № 2. 10.1109/tmag.1981.1061188' target='_blank'>https://doi: 10.1109/tmag.1981.1061188
  23. Galstenkova M.R., Mukhortova Y.R., Pryadko A.S. et al. // Nano-Struct. Nano-Objects. 2025. V. 41. P. 101431. https://doi.org/10.1016/j.nanoso.2025.101431
  24. Sarmasti K., Golchin A., Bostani A. et al. // Chemosphere. 2025. V. 378. P. 144424. https://doi.org/10.1016/j.chemosphere.2025.144424
  25. Basit A., Yaqoob Z., Zahid A. et al. // Heliyon. 2025. V. 11. № 2. P. e41063. https://doi.org/10.1016/j.heliyon.2024.e41063
  26. Brusko V., Khannanov A., Rakhmatullin A. et al. // Carbon. 2024. V. 229. 119507. https://doi.org/10.1016/j.carbon.2024.119507
  27. Tayyebi A., Outokesh M. // RSC Advances. 2016. V. 6. № 17. P. 13898. https://doi.org/10.1039/C5RA19057F
  28. Mondal A., Kundu A.K., Biswas H.S. et al. // Inorg. Chem. Commun. 2024. V. 170. P. 113016. https://doi.org/10.1016/j.inoche.2024.113016
  29. Rehman T. ur, Shah L.A., Khan M. // Mater. Adv. 2024. V. 5. № 2. P. 806. https://doi.org/10.1039/D3MA00803G
  30. Ribeiro V.G.P., Barreto A.C.H., Denardin J.C. et al. // J. Mater. Adv. 2013. V. 48. P. 7875. https://doi.org/10.1007/s10853-013-7477-4

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences