Synthesis of TiO₂ nanopowder by thermal decomposition of titanium peroxo complex in the presence of NaCl as a template

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Dispersed titanium dioxide was synthesized by thermal decomposition (700°C) of titanium peroxo complex in the presence of sodium chloride as a template at different precursor/template ratios. Its comparative analysis was carried out with titanium dioxide obtained in the absence of a template. Titanium dioxide is represented by two crystalline phases - anatase and rutile. It has been established that the presence of sodium chloride during the synthesis of nanodispersed TiO₂ leads to the formation of an aggregate of spherical TiO₂ crystallites with an average diameter of 19 nm. The dominant crystalline phase is anatase (>90%). With an increase in the NaCl content in the initial mixture, an increase in the proportion of the <15 nm crystallites fraction, an increase in the proportion of the anatase phase, and an increase in the Ssp value are observed.

全文:

受限制的访问

作者简介

A. Shishmakov

Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences

Email: Mikushina@ios.uran.ru
俄罗斯联邦, st. S. Kovalevskaya, d. 22/20, Ekaterinburg, 620108

Yu. Mikushina

Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: Mikushina@ios.uran.ru
俄罗斯联邦, st. S. Kovalevskaya, d. 22/20, Ekaterinburg, 620108

O. Koryakova

Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences

Email: Mikushina@ios.uran.ru
俄罗斯联邦, st. S. Kovalevskaya, d. 22/20, Ekaterinburg, 620108

参考

  1. Лукутцова Н.П., Постникова О.А., Пыкин А.А. и др. // Вестн. БГТУ им. В.Г. Шухова. 2015. № 3. C. 54.
  2. Luévano-Hipуlito E., Martínez-de la Cruz A. // Constr. Build. Mater. 2018. V. 174. P. 302.https://doi.org/10.1016/j.conbuildmat.2018.04.095
  3. Verma R., Singh S., Dalai M.K. et al. // Mater. Des. 2017. V. 133. P. 10.https://doi.org/10.1016/j.matdes.2017.07.042
  4. Коботаева Н.С., Скороходова Т.С. // Химия в интересах устойчивого развития. 2019. Т. 27. № 1. С. 13.https://doi.org/10.15372/KhUR20190102
  5. Dudanov I.P., Vinogradov V.V., Chrishtop V.V. et al. // Res. Pract. Med. J. 2021. V. 8. № 1. P. 30.https://doi.org/10.17709/2409-2231-2021-8-1-3
  6. Ремпель А.А., Валеева А.А. // Изв. АН. Сер. Хим. 2019. V. 68. № 12. C. 2163.https://doi.org/10.1007/s11172-019-2685-y
  7. Бессуднова Е.В., Шикина Н.В., Исмагилов З.Р. // Альтернативная энергетика и экология (ISJAEE). 2014. Т. 7. C. 39.
  8. Губарева Е.Н., Баскаков П.С., Строкова В.В. и др. // Изв. СПбГТИ (ТУ). 2019. № 48. С. 78.
  9. Евсейчик М.А., Максимов С.Е., Хорошко Л.С. и др. // Журн. БГУ. Физика. 2023. № 2. C. 58.
  10. Yang J., Mei S., Ferreira J.M.F. // Mater. Sci. Eng. C. 2001. V. 15. № 1–2. P. 183.https://doi.org/10.1016/S0928-4931(01)00274-0
  11. Гаврилов А.И., Родионов И.А., Гаврилова Д.Ю. и др. // Докл. АН. 2012. Т. 444. № 5. С. 510.
  12. Khomane R.B. // J. Colloid Interface Sci. 2011. V. 356. P. 369.https://doi.org/10.1016/j.jcis.2010.12.048
  13. Sonawane R.S., Hegde S.G., Dongare M.K. // Mater. Chem. Phys. 2003. V. 77. P. 744.https://doi.org/10.1016/S0254-0584(02)00138-4
  14. Kobayashi M., Petrykin V., Tomita K. et al. // J. Ceram. Soc. Jpn. (JCS-Japan). 2008. V. 116. P. 578.https://doi.org/10.2109/jcersj2.116.578
  15. Krivtsov I., Ilkaeva M., Avdin V. et al. // J. Colloid Interface Sci. 2015. V. 444. P. 87.https://doi.org/10.1016/J.JCIS.2014.12.044
  16. Гейнц Н.С., Воробьев Д.В., Корина Е.А. и др. // Вестн. ЮУрГУ. Сер. Химия. 2021. Т. 13. № 2. С. 79.https://doi.org/10.14529/chem210208
  17. Яминский И.В., Ахметова А.И., Курьяков В.Н. и др. // Неорган. материалы. 2020. T. 56. № 11. С. 1221.http://doi.org/10.31857/S0002337X20110172
  18. Mendonça V.R., Lopes O.F., Avansi W. Jr. et al. // Ceram. Int. 2019. V. 45. № 17. P. 22998.https://doi.org/10.1016/j.ceramint.2019.07.345
  19. Montanhera M.A., Venancio R.H.D., Pereira É.A. et al. // Mater. Res. 2021. V. 24. P. 1.https://doi.org/10.1590/1980-5373-MR-2020-0377
  20. Savinkina E.V., Obolenskaya L.N., Kuzmicheva G.M. et al. // J. Mater. Res. 2018. V. 33. № 10. P. 1422.https://doi.org/10.1557/jmr.2018.52
  21. Nag M., Ghosh S., Rana R.K. et al. // J. Phys. Chem. Lett. 2010. V. 1. P. 2881.https://doi.org/10.1021/jz101137m
  22. Etacheri V., Seery M.K., Hinder S.J. et al. // Adv. Funct. Mater. 2011. V. 21. P. 3744.https://doi.org/10.1002/adfm.201100301
  23. Kobayashi M., Kato H., Kakihana M. // Nanomater. Nanotechnol. (NAX). 2013. V. 3. № 1. Р. 1.
  24. Баян Е.М., Лупейко Т.Г., Пустовая Л.Е. // Хим. физика. 2019. T. 38. № 4. C. 84.https://doi.org/10.1134/S0207401X19040022
  25. Ahn J.Y., Cheon H.K., Kim W.D. et al. // Chem. Eng. J. 2012. V. 188. P. 216.https://doi.org/10.1016/j.cej.2012.02.007
  26. Комаров В.С. // Вес. Нац. акад. навук Беларусi. Сер. хiм. навук. 2014. № 1. С. 16.
  27. Li N., An D., Yi Z. et al. // Ceram. Int. 2022. V. 48. № 2. P. 2637.https://doi.org/10.1016/j.ceramint.2021.10.047
  28. Zhu J., Wang B., Jin P. // RSC Adv. 2015. V. 5. P. 92004.https://doi.org/10.1039/C5RA18744C
  29. Liebertseder M., Wang D., Cavusoglu G. et al. // Nanoscale. 2021. V. 13. P. 2005.https://doi.org/10.1039/d0nr08871d
  30. Liu R., Yang S., Wang F. et al. // ACS Appl. Mater. Interfaces. 2012. V. 4. № 3. P. 1537.https://doi.org/10.1021/am201756m
  31. Raskó J., Kiss J. // Catal Lett. 2006. V. 111. № 1–2. P. 87.https://doi.org/10.1007/s10562-006-0133-8
  32. Mino L., Spoto G., Ferrari A.M. // J. Phys. Chem. C. 2014. V. 118. № 43. P. 25016.https://doi.org/doi.org/10.1021/jp507443k
  33. Shtyka O., Shatsila V., Ciesielski R. et al. // Catalysts. 2021. V. 11. P. 1.https://doi.org/10.3390/catal11010047
  34. Шишмаков А.Б., Корякова О.В., Микушина Ю.В. и др. // Журн. неорган. химии. 2014. Т. 59. № 9. С. 1210.https://doi.org/10.7868/S0044457X14090207
  35. Wu J.-M. // J. Cryst. Growth. 2004. V. 269. № 2. P. 347.https://doi.org/10.1016/j.jcrysgro.2004.05.023
  36. Shaporev V.P., Shestopalov O.V., Pitak I.V. // Sci. J. “ScienceRise”. 2015. V. 1/2. P. 10.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. IR spectra of samples: 1 – TiO₂; 2 – TiO₂/NaCl(1); 3 – TiO₂/NaCl(2); 4 – TiO₂/NaCl(3).

下载 (194KB)
3. Fig. 2. IR spectra of samples: 1 – TiO₂; 2 – TiO₂(1); 3 – TiO₂(2); 4 – TiO₂(3).

下载 (225KB)
4. Fig. 3. Fragment of the diffraction pattern of samples: 1 – TiO₂; 2 – TiO₂(1); 3 – TiO₂(2); 4 – TiO₂(3).

下载 (128KB)
5. Rice. 4. Microphotographs of samples: a, b – TiO₂; c – TiO₂/NaCl(3); d–g – TiO₂(1); h – TiO₂(2); and – TiO₂(3).

下载 (1MB)
6. Fig. 5. Graph of the dependence of hydrogen peroxide conversion on TiO₂ and TiO₂(1–3) samples on the NaCl/TiO₂ ratio in the calcined material.

下载 (69KB)

版权所有 © Russian Academy of Sciences, 2025