Copper ferrite nanoparticles: synthesis and study of their photocatalytic activity
- Authors: Pavlikov A.Y.1,2, Saikova S.V.1,2, Karpov D.V.1,2, Ivanenko T.Y.3, Nemkova D.I.1
-
Affiliations:
- Siberian Federal University
- Institute of Chemistry and Chemical Engineering, Krasnoyarsk Scientific Center (Federal Research Center), Siberian Branch, Russian Academy of Sciences
- Institute of Chemistry and Chemical Engineering Krasnoyarsk Scientific Center (Federal Research Center), Siberian Branch, Russian Academy of Sciences
- Issue: Vol 70, No 4 (2025)
- Pages: 583-596
- Section: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
- URL: https://cijournal.ru/0044-457X/article/view/687072
- DOI: https://doi.org/10.31857/S0044457X25040124
- EDN: https://elibrary.ru/HPHWDC
- ID: 687072
Cite item
Abstract
Magnetic copper ferrite (II) nanoparticles are promising materials for biomedical, electronic and photocatalytic applications. In this work, homogeneous spherical CuFe₂O₄ nanoparticles with a size of 18.3 ± 0.4 nm and a band gap width of 2.37 eV were obtained by anion-exchange resin precipitation using AV-17-8 in OH form in the presence of dextran-40. The photocatalytic activity of the obtained material was studied on the example of photodegradation of a widely used anionic dye – indigo carmine in the presence of sacrificial reagents: sodium citrate, carbonate and hydrocarbonate, hydrogen peroxide. The effectiveness of the joint application of electron donors - sodium hydrocarbonate and citrate – in reducing the probability of recombination of photogenerated holes and electrons has been demonstrated. The kinetic parameters of the process were determined (pseudo-zero order, kapp. = 3.6 × 10–7 mol/(l × min), T1/2 = 75.8 ± 2.3 min) and its mechanism was elucidated. The intermediates of the photocatalytic oxidation of indigocarmine were determined by NMR.
Full Text

About the authors
A. Y. Pavlikov
Siberian Federal University; Institute of Chemistry and Chemical Engineering, Krasnoyarsk Scientific Center (Federal Research Center), Siberian Branch, Russian Academy of Sciences
Author for correspondence.
Email: apavlikov98@mail.ru
Russian Federation, Krasnoyarsk, 660041; Akademgorodok, Krasnoyarsk, 660036
S. V. Saikova
Siberian Federal University; Institute of Chemistry and Chemical Engineering, Krasnoyarsk Scientific Center (Federal Research Center), Siberian Branch, Russian Academy of Sciences
Email: apavlikov98@mail.ru
Russian Federation, Krasnoyarsk, 660041; Akademgorodok, Krasnoyarsk, 660036
D. V. Karpov
Siberian Federal University; Institute of Chemistry and Chemical Engineering, Krasnoyarsk Scientific Center (Federal Research Center), Siberian Branch, Russian Academy of Sciences
Email: apavlikov98@mail.ru
Russian Federation, Krasnoyarsk, 660041; Akademgorodok, Krasnoyarsk, 660036
T. Y. Ivanenko
Institute of Chemistry and Chemical EngineeringKrasnoyarsk Scientific Center (Federal Research Center), Siberian Branch, Russian Academy of Sciences
Email: apavlikov98@mail.ru
Russian Federation, Akademgorodok, Krasnoyarsk, 660036
D. I. Nemkova
Siberian Federal University
Email: apavlikov98@mail.ru
Russian Federation, Krasnoyarsk, 660041
References
- Akita M., Ceroni P., Stephenson C.R., Masson G. // J. Org. Chem. 2023. V. 88. P. 6281.https://doi.org/10.1021/acs.joc.3c00812
- Prentice C., Martin A.E., Morrison J. et al. // Org. Biomol. Chem. 2023. V. 21. P. 3307.https://doi.org/10.1039/D3OB00231D
- Huang Z., Luo N., Zhang C. et al. // Nat. Rev. Chem. 2022. V. 6. P. 197.https://doi.org/10.1038/s41570-022-00359-9
- Krasilnikov V.N., Zhukov V.P., Perelyaeva L.A. et al. // Phys. Solid State. 2013. V. 55. P. 1903.https://doi.org/10.1134/S1063783413090199
- Kumar S.G., Rao K.S.R.K. // RSC Advances. 2015. V. 5. P. 3306.https://doi.org/10.1039/C4RA13299H
- Chen Y., Soler L., Cazorla C. et al. // Nat. Commun. 2023. V. 14. P. 6165.https://doi.org/10.1038/s41467-023-41976-2
- Kim S.P., Choi M.Y., Choi H.C. // Mater. Res. Bull. 2016. V. 74. P. 85.https://doi.org/10.1016/j.materresbull.2015.10.024
- Liu X., Zhai H., Wang P. et al. // Catal. Sci. Technol. 2019. V. 9. P. 652.https://doi.org/10.1039/C8CY02375A
- Al-Alotaibi A.L., Altamimi N., Howsawi E. et al. // J. Inorg. Organomet. Polym. 2021. V. 31. P. 2017.https://doi.org/10.1007/s10904-021-01939-w
- Sarkar N., Gadore V., Mishra S.R. et al. // J. Inorg. Organomet. Polym. 2024. P. 1.https://doi.org/10.1007/s10904-024-03132-1
- Basu M., Sinha A.K., Pradhan M. et al. // Environ. Sci. Technol. 2010. V. 44. P. 6313.https://doi.org/10.1021/es101323w
- Adinarayana D., Annapurna N., Mohan B.S., Douglas P. // Desalination and Water Treatment. 2024. V. 320. P. 100593.https://doi.org/10.1016/j.dwt.2024.100593
- Peng H.-J., Zheng P.-Q., Chao H.-Y. et al. // RSC Adv. 2020 V. 10. P. 551.https://doi.org/10.1039/C9RA08801F
- Ciriminna R., Delisi R., Parrino F. et al. // Chem. Commun. 2017. V. 53. P. 7521.https://doi.org/10.1039/C7CC04242F
- Nasri R., Larbi T., Khemir H. et al. // Inorg. Chem. Commun. 2020. V. 119. P. 108113.https://doi.org/10.1016/j.inoche.2020.108113
- Wang L., Wang K., He T. et al. // ACS Sustainable Chem. Eng. 2020. V. 8. P. 16048.https://doi.org/10.1039/C3RA46079G
- Cao X., Chen Y., Jiao S. et al. // Nanoscale. 2014. V. 6. P. 12366.https://doi.org/10.1039/C4NR03729D
- Nikolić V.N., Vasić M.M., Kisić D. // J. Solid State Chem. 2019. V. 275. P. 187.https://doi.org/10.1016/j.jssc.2019.04.007
- Ponhan W., Maensiri S. // Solid State Sci. 2009. V. 11. P. 479.https://doi.org/10.1016/j.solidstatesciences.2008.06.019
- Xiao Z., Jin S., Wang X. et al. // J. Mater. Chem. 2012. V. 22. P. 16598.https://doi.org/10.1039/C2JM32869K.
- Teraoka Y., Shangguan W.F., Kagawa S. // Catal. Surv. Jpn. 1998. V. 2. P. 155.https://doi.org/10.1163/156856700X00246
- Saikova S., Pavlikov A., Karpov D. et al. // Materials. 2023. V. 16. P. 2318.https://doi.org/10.3390/ma1606231843
- Nemkova D.I., Saikova S.V., Krolikov A.E. et al. // Russ. J. Inorg. Chem. 2024. V. 69. P. 1.https://doi.org/10.1134/S0036023623603069
- Yusmar A., Armitasari L., Suharyadi E. // Mater. Today: Proceedings. 2018. V. 5. P. 14955.https://doi.org/10.1016/j.matpr.2018.04.037
- Sangeetha M., Ambika S., Madhan D. et al. // J. Mater. Sci. - Mater. Electron. 2024. V. 35. P. 368.https://doi.org/10.1007/s10854-024-12076-8
- Zhang Z., Cai W., Rong S. et al. // Catalysts. 2022. V. 12. P. 910.https://doi.org/10.3390/catal12080910
- Sonu Sharma S., Dutta V. et al. // Appl. Nanosci. 2023. V. 13. P. 3693.https://doi.org/10.1007/s13204-022-02500-y
- Amuthan T., Sanjeevi R., Kannan G.R., Sridevi A. // Physica B: Condens. Matter. 2022. V. 638. P. 413842.https://doi.org/10.1016/j.physb.2022.413842
- Li X., Shi C., Feng Z. et al. // J. Alloys Compd. 2023. V. 946. P. 169467.https://doi.org/10.1016/j.jallcom.2023.169467
- Dutta V., Sudhaik A., Khan A.A.P. et al. // Mater. Res. Bull. 2023. V. 164. P. 112238.https://doi.org/10.1016/j.materresbull.2023.112238
- Keerthana S., Yuvakkumar R., Ravi G. et al. // Environ. Res. 2021. V. 200. P. 111528.https://doi.org/10.1016/j.envres.2021.111528
- Kurenkova A.Y., Medvedeva T.B., Gromov N.V. et al. // Catalysts. 2021. V. 11. P. 870.https://doi.org/10.3390/catal11070870
- Куренкова А.Ю. Фотокаталитическое получение водорода из водных растворов неорганических соединений и органических субстратов растительного происхождения под действием видимого света. Новосибирск: Институт катализа им. Г.К. Борескова СО РАН, 2021. 124 с.
- Soto-Arreola A., Huerta-Flores A.M., Mora-Hernández J.M. et al. // J. Photochem. Photobiol., A: Chem. 2018. V. 357. P. 20.https://doi.org/10.1016/j.jphotochem.2018.02.016
- Sathiyan K., Bar‐Ziv R., Marks V. et al. // Chem. A. Eur. J. 2021. V. 27. P. 15936.https://doi.org/10.1002/chem.202103040
- Ahmad H., Kamarudin S.K., Minggu L.J., Kassim M. // Renew. Sustain. Energy Rev. 2015. V. 43. P. 599.https://doi.org/10.1016/j.rser.2014.10.101
- Christoforidis K.C., Fornasiero P. // Chem. Cat. Chem. 2017. V. 9. P. 1523.https://doi.org/10.1002/cctc.201601659
- Сайкова С.В., Пашков Г.Л., Пантелеева М.В. Реакционно-ионообменные процессы извлечения цветных металлов и синтеза дисперсных материалов. Красноярск: Сиб. федер. ун-т, 2018. 198 с.
- Aphalo P.J., Albert A., Björn L.O. et al. Beyond the Visible: A handbook of best practice in plant UV photobiology. Helsinki: University of Helsinki, Division of Plant Biology, 2012. 174 p.
- Saikova S.V., Trofimova T.V., Pavlikov A.Y., Samoilo A.S. // Russ. J. Inorg. Chem. 2020. V. 65. P. 291.https://doi.org/10.1134/S0036023620030110
- Finch G.I., Sinha A.P.B., Sinha K.P. // Proc. Royal Soc. A: Math. Phys. Eng. Sci. 1957. V. 242. P. 28.https://doi.org/10.1098/rspa.1957.0151
- Balagurov A.M., Bobrikov I.A., Maschenko M.S. et al. // Crystallogr. Rep. 2013. V. 58. P. 710.
- Makuła P., Pacia M., Macyk W. // J. Phys. Chem. Lett. 2018, V. 9. P. 6814.https://doi.org/10.1021/acs.jpclett.8b02892
- Василевский А.М., Коноплев Г.А., Панов М.Ф. // Оптико-физические методы исследований: Методические указания к лабораторным работам. СПб.: Изд-во СПбГЭТУ “ЛЭТИ”, 2011. 56 с.
- Zander J., Fink M.F., Attia M. et al. // Sustain. Energy Fuels. 2024. V. 8. P. 4848.https://doi.org/10.1039/D4SE00968A
- Uddin M.R., Khan M.R., Rahman M.W. et al. // React. Kinet. Mech. Catal. 2015. V. 116. P. 589.https://doi.org/10.1007/s11144-015-0911-7
- Lu C., Bao Z., Qin C. et al. // RSC Adv. 2016. V. 6. P. 110155.https://doi.org/10.1039/C6RA23970F
- Krieger W., Bayraktar E., Mierka O. et al. // AIChE J. 2020. V. 66. P. e16953.https://doi.org/10.1002/aic.1695
- Manjunatha J.G.G. // J. Food. Drug. Anal. 2018. V. 26. P. 292.https://doi.org/10.1016/j.jfda.2017.05.002
- Braz S., Justino L.L.G., Ramos M.L., Fausto R. // Molecules. 2024. V. 29. P. 3223.https://doi.org/10.3390/molecules29133223
- Tavallali H., Deilamy-Rad G., Moaddeli A., Asghari K. // Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2017. V. 183. P. 319.https://doi.org/10.1016/j.saa.2017.04.050
- Mudunkotuwa I.A., Grassian V.H. // J. Am. Chem. Soc. 2010. V. 132. P. 14986.https://doi.org/10.1021/ja106091q
- Field T.B., McCourt J.L., McBryde W.A.E. // Can. J. Chem. 1974. V. 52. P. 3119.https://doi.org/10.1139/v74-458
- Dheyab M.A., Aziz A.A., Jameel M.S. et al. // Sci. Rep. 2020. V. 10. P. 10793.https://doi.org/10.1038/s41598-020-67869-8
- Goodarzi A., Sahoo Y., Swihart M.T. et al. // MRS Online Proc. Library. 2003. V. 789. P. 23.https://doi.org/10.1557/PROC-789-N6.6
- Quici N., Morgada M.E., Gettar R.T. et al. // Appl. Catal. B. 2007. V. 71. P. 117.https://doi.org/10.1016/j.apcatb.2006.09.001
- Liu Y., He X., Duan X. et al. // Chem. Eng. J. 2015. V. 276. P. 113.https://doi.org/10.1016/j.cej.2015.04.048
- Tomina E.V., Sladkopevtsev B.V., Tien N.A. et al. // Inorg. Mater. 2023. V. 59. P. 1363.https://doi.org/10.1134/S0020168523130010
- Томина Е., Куркин Н., Конкина Д. // Экология и промышленность России. 2022. Т. 26. С. 17.https://doi.org/10.18412/1816-0395-2022-5-17-21
- Meichtry J.M., Quici N., Mailhot G., Litter M.I. // Appl. Catal. B: Environ. 2011. V. 102. P. 555.https://doi.org/10.1016/j.apcatb.2010.12.038
- Haleem A., Ullah M., Shah A. et al. // Water. 2024. V. 16. P. 1588.https://doi.org/10.3390/w16111588
- Yang D., Ni X., Chen W., Weng Z. // J. Photochem. Photobiol., A: Chem. 2008. V. 195. P. 323.https://doi.org/10.1016/j.jphotochem.2007.10.020
- Cano M., Solis M., Diaz J. et al. // African J. Biotech. 2011. V. 10. P. 12224.
- Ramos R.O., Albuquerque M.V.C. Lopes W. S. et al. // J. Water Process. Eng. 2020. V. 37. P. 101535.https://doi.org/10.1016/j.jwpe.2020.101535
- Hernández-Gordillo A., Rodríguez-González V., Oros-Ruiz S. // Catalysis Today. 2016. V. 266. P. 27.https://doi.org/10.1016/j.cattod.2015.09.001
- Crema A.P.S. Piazza Borges L.D., Micke G.A. et al. // Chemosphere. 2019. V. 244. P. 125502.https://doi.org/10.1016/j.chemosphere.2019.125502
- Terres J., Battisti R., Andreaus J. et al. // Biocatal. Biotransform. 2014. V. 32. P. 64.https://doi.org/10.3109/10242422.2013.873416
- Vautier M., Guillard C., Herrmann J. M. // J. Catal. 2001. V. 201. P. 46.https://doi.org/10.1006/jcat.2001.3232
- Jefferson W.A., Hu C. Song D // ACS Omega. 2017. V. 2. P. 6728.https://doi.org/10.1021/acsomega.7b00321
Supplementary files
