Thermodynamic modeling of phase formation conditions in the Si–O–C–H–He and Si–O–C–H–N–He systems
- Authors: Shestakov V.A.1,2, Kosinova M.L.3
-
Affiliations:
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
- Novosibirsk State University of Architecture and Civil Engineering
- aNikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
- Issue: Vol 70, No 4 (2025)
- Pages: 560-565
- Section: ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СИСТЕМ
- URL: https://cijournal.ru/0044-457X/article/view/687004
- DOI: https://doi.org/10.31857/S0044457X25040092
- EDN: https://elibrary.ru/HPFQFK
- ID: 687004
Cite item
Abstract
Thermodynamic modeling of the film synthesis process from the gas phase in the Si–O–C–H–He and Si–O–C–H–N–He systems during the decomposition of hexamethyldisiloxane was performed. The modeling used the method for calculating chemical equilibria based on minimizing the Gibbs energy of the system, implemented using the Data Bank on the properties of electronic materials. It was shown that various phase complexes containing silicon oxide, carbide, and nitride can be obtained in CVD processes of such systems. The results of the thermodynamic modeling can be useful for developing methods for the synthesis of film coatings based on such phase complexes.
Full Text

About the authors
V. A. Shestakov
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University of Architecture and Civil Engineering
Author for correspondence.
Email: vsh@niic.nsc.ru
Russian Federation, Novosibirsk, 630090; Novosibirsk, 630008
M. L. Kosinova
aNikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
Email: vsh@niic.nsc.ru
Russian Federation, Novosibirsk, 630090
References
- Stabler C., Ionescu E., Graczyk-Zajac M. et al. // J. Am. Ceram. Soc. 2018. V. 101. P. 4817. https://doi.org/10.1111/jace.15932
- Colombo P., Mera G., Riedel R. et al. // J. Am. Ceram. Soc. 2010. V. 93. P. 1805. https://doi.org/10.1111/j.1551-2916.2010.03876.x
- Riedel R., Mera G., Hauser R. et al. // J. Ceram. Soc. Jpn. 2006. V. 114. P. 425. http://dx.doi.org/10.2109/jcersj.114.425
- Linck C., Ionescu E., Papendorf B. et al. // Int. J. Mater. Res. 2012. V. 103. P. 31. https://doi.org/10.3139/146.110625
- Rosenburg F., Balke B., Nicoloso N. et al. // Molecules. 2020. V. 25. P. 5919. 10.3390/molecules25245919' target='_blank'>https://doi: 10.3390/molecules25245919
- Roth F., Schmerbauch C., Ionescu E. et al. // J. Sens. Sens. Syst. 2015. V. 4. P. 133. https://doi.org/10.5194/jsss-4-133-2015
- Liu J., Tian C., Jiang T. et al. // J. Eur. Ceram. Soc. 2023. V. 43. P. 3191. https://doi.org/10.1016/j.jeurceramsoc.2023.02.045
- Xia K., Liu X., Liu H. et al. // Electrochim. Acta. 2021. V. 372. 137899.
- Mujib S.B., Cuccato R., Mukherjee S. et al. // Ceram. Int. 2020. V. 46. P. 3565. https://doi.org/10.1016/j.ceramint.2019.10.074
- Graczyk-Zajac M., Reinold L.M., Kaspar J. et al. // Nanomaterials. 2015. V. 5. P. 233. https://doi.org/10.3390/nano5010233
- Tang H., Wang K., Ren K. et al. // Ceram. Inter. 2023. V. 49. P. 20406. https://doi.org/10.1016/j.ceramint.2023.03.169
- Dong B.-B., Wang F.-H., Yang M.-Y. et al. // J. Membr. Sci. 2019. V. 579. P. 111. https://doi.org/10.1016/j.memsci.2019.02.066
- Zhuo R., Colombo P., Pantano C., Vogler E.A. // Acta Biomater. 2005. V. 1. P. 583. https://doi.org/10.1016/j.actbio.2005.05.005
- Arango-Ospina M., Xie F., Gonzalo-Juan I. et al. // Appl. Mater. Today. 2020. V. 18. 100482. https://doi.org/10.1016/j.apmt.2019.100482
- Liu H., ul Haq Tariq N., Han R. et al. // J. Non-Cryst. Solids. 2022. V. 575. P. 121204. https://doi.org/10.1016/j.jnoncrysol.2021.121204
- Iastrenski M.F., da Silva P.R.C., Tarley C.R.T., Segatelli M.G. // Ceram. Int. 2019. V. 45. P. 21698. https://doi.org/10.1016/j.ceramint.2019.07.170
- Wen Q., Yu Z., Riedel R. // Prog. Mater. Sci. 2020. V. 109. P. 100623. https://doi.org/10.1016/j.pmatsci.2019.100623
- Widgeon S.J., Sen S., Mera G. et al. // Chem. Mater. 2010. V. 22. P. 6221. https://doi.org/10.1021/cm1021432
- Breval E., Hammond M., Pantano C.G. // J. Am. Ceram. Soc. 1994. V. 77. P. 3012. https://doi.org/10.1111/j.1151-2916.1994.tb04538.x
- Lu K., Erb D. // Int. Mater. Rev. 2018. V. 63. P. 139. https://doi.org/10.1080/09506608.2017.1322247.
- Tian Z., Zhu W., Yan X., Su D. // Materials. 2022. V. 15. P. 6395. https://doi.org/10.3390/ma15186395
- Ricohermoso E.III, Klug F., Schlaak H. et al. // Int. J. Appl. Ceram. Technol. 2022. V. 19. P. 149. https://doi.org/10.1111/ijac.13800
- Ricohermoso E.III, Klug F., Schlaak H. et al. // J. Eur. Ceram. Soc. 2021. V. 41. P. 6377. https://doi.org/10.1016/j.jeurceramsoc.2021.07.001
- Soraru G.D., D’Andrea G., Campostrini R. et al. // J. Am. Ceram. Soc. 1995. V. 78. P. 379. https://doi.org/10.1111/j.1151-2916.1995.tb08811.x
- Ryan J.V., Colombo P., Howell J.A., Pantano C.G. // Int. J. Appl. Ceram. Technol. 2010. V. 7. P. 675. https://doi.org/10.1111/j.1744-7402.2009.02374.x
- Mandracci P., Rivolo P. // Coatings. 2023. V. 13. P. 1075. https://doi.org/10.3390/coatings13061075
- Hong N., Zhang Y., Sun Q. et al. // Materials. 2021. V. 14. P. 4827. https://doi.org/10.3390/ma14174827
- de Freitas A.S.M., Maciel C.C., Rodrigues J.S. et al. // Vacuum. 2021. V. 194. P. 110556. https://doi.org/10.1016/j.vacuum.2021.110556
- Gilman A.B., Zinoviev A.V., Kuznetsov A.A. // High Energy Chem. 2022. V. 56. P. 468. [Гильман А.Б., Зиновьев А.В., Кузнецов А.А. // Хим. выс. энергий. 2022. Т. 56. С. 470. https://doi.org/10.1134/S0018143922060078]
- Balderas I.E.G., Ruiz C.M., Andres E.R. et al. // Int. J. Appl. Ceram. Technol. 2024. V. 21. P. 3319. https://doi.org/10.1111/ijac.14796
- Yu S., Tu R., Ito A., Goto T. // Mater. Lett. 2010. V. 64. P. 2151. https://doi.org/10.1016/j.matlet.2010.07.022
- Yu S., Tu R., Goto T. // J. Eur. Ceram. Soc. 2016. V. 36. P. 403. http://dx.doi.org/10.1016/j.jeurceramsoc.2015.10.029
- Jacobson N.S., Opila E.J. // Metall. Trans. A. 1993. V. 24. P. 1212. https://doi.org/10.1007/BF02657254
- Sevast'yanov V.G., Ezhov Yu.S., Simonenko E.P., Kuznetsov N.T. Materials Science Trans. Forum. Tech. Publications, Switzerland. 2004. V. 457–460. Р. 59. https:// doi.org/10.4028/www.scientific.net/MSF.457-460.59
- Лебедев А.С., Еремяшев В.Е., Трофимов Е.А., Анфилогов В.Н. // Докл. АН. 2019. Т. 484. № 5. С. 559. https://doi.org/10.1134/S0012500819020046
- Шестаков В.А., Косяков В.И., Косинова М.Л. // Изв. АН. Сер. хим. 2019. Т. 11. С. 1983. https://doi.org/1066-5285/19/6811-1983
- Шестаков В.А., Селезнев В.А., Мутилин С.В. и др. // Журн. неорган. химии. 2023. Т. 68. № 5. С. 651. https://doi.org/10.1134/S0036023623600491
- Шестаков В.А., Косинова М.Л. // Журн. неорган. химии. 2024. Т. 64. № 1. С. 43. https://doi.org/10.31857/S0044457X24010059
- Shestakov V.A., Kosinova M.L. // Russ. J. Phys. Chem. A. 2024. V. 98. № 9. P. 2007. https://doi.org/10.1134/S0036024424701140
- Суляева В.С., Шестаков В.А., Румянцев Ю.М., Косинова М.Л. // Неорган. материалы. 2018. Т. 54. № 2. С. 146. https://doi.org/10.1134/S0020168518020152
- Шестаков В.А., Яковкина Л.В., Кичай В.Н. // Журн. неорган. химии. 2022. Т. 67. № 12. С. 1746. https://doi.org/10.31857/S0044457X22600608
- Кузнецов Ф.А., Буждан Я.М., Коковин Г.А. // Изв. СО АН СССР. Сер. хим. наук. 1975. № 2. № 1. С. 24.
- Kuznetsov F.A., Titov V.A. Proc. Int. Symp. on Advanced Materials (September 24–30, 1995). Jpn., P. 16.
- Термодинамические свойства индивидуальных веществ. / Под ред. Глушко В.П. и др. М.: Наука, 1988. Т. 3. Кн. 2. 395 с.
Supplementary files
