Binding of gold(III) using bismuth hexamethylenedithiocarbamate: the double complexes of [Au(S2CNHm)2][Bi(S2CNHm)2Cl2] and [Au(S2CNHm)2]2[Bi2(S2CNHm)2Cl6] (preparation, crystal structure, thermal behavior and anti-mycobacterial activity)

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

It was established that during the interaction of bismuth hexamethylenedithiocarbamate (HmDtc) with a H[AuCl4]/2M HCl solution, the individual forms of gold(III) binding in the solid phase are double complexes of [Au(S2CNHm)2][Bi(S2CNHm)2Cl2] (I) and [Au(S2CNHm)2]2[Bi2(S2CNHm)2Cl6] (II). The structures of the obtained compounds include centrosymmetric/non-centrosymmetric (in I/II) complex cations of Au(III), as well as heteroleptic bismuth anions: both the mononuclear and binuclear, whose the ratio Bi : Dtc : Cl = = 1:2:2/2:2:6 (I/II). The secondary S∙∙∙S and S∙∙∙Cl interactions that arise between these ionic structural units lead to the formation of three-dimensional supramolecular architectures. In the IR spectra of the compounds, the absorption bands of N–C(S)S bonds were assigned to HmDtc ligands in the inner sphere of Au(III) complex cations and Bi(III) anions. Thermal behavior of I and II was studied using the STA technique. The residual substance obtained after thermolysis of the samples is represented by metallic particles of a solid solution of bismuth in gold, coated with a layer of Bi2O3. For complex I, a high level of anti-mycobacterial activity in vitro was revealed against the non-pathogenic strain Mycolicibacterium smegmatis.

Толық мәтін

Рұқсат жабық

Авторлар туралы

E. Novikova

Institute of Geology and Nature Management, Far Eastern Branch of the Russian Academy of Sciences

Email: alexander.v.ivanov@chemist.com
Ресей, Blagoveshchensk, 675000

I. Lutsenko

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; Peoples' Friendship University of Russia named after Patrice Lumumba

Email: alexander.v.ivanov@chemist.com
Ресей, Moscow, 119991; Moscow, 117198

O. Bekker

Vavilov Institute of General Genetics, Russian Academy of Sciences

Email: alexander.v.ivanov@chemist.com
Ресей, Moscow, 119333

Yu. Nelyubina

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: alexander.v.ivanov@chemist.com
Ресей, Moscow, 119334

A. Ivanov

Institute of Geology and Nature Management, Far Eastern Branch of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: alexander.v.ivanov@chemist.com
Ресей, Blagoveshchensk, 675000

Әдебиет тізімі

  1. Angeloski A., Flower-Donaldson K., Matar F. et al. // ChemNanoMat. 2024. V. 10. P. e202300514. https://doi.org/10.1002/cnma.202300514
  2. Tamilvanan S., Gurumoorthy G., Thirumaran S., Ciattini S. // Polyhedron. 2017. V. 123. P. 111.https://doi.org/10.1016/j.poly.2016.10.026
  3. Sivasekar S., Ramalingam K., Rizzoli C., Alexander N. // Inorg. Chim. Acta. 2014. V. 419. P. 82. https://doi.org/10.1016/j.ica.2014.04.042
  4. Olatunde O.C., Ferjani H., Onwudiwe D.C. // J. Phys. Chem. Solids. 2023. V. 179. P. 111388. https://doi.org/10.1016/j.jpcs.2023.111388
  5. Новикова Е.В., Егорова И.В., Исаковская К.Л., Иванов А.В. // Журн. неорган. химии. 2023. Т. 68. № 10. С. 1433. https://doi.org/10.31857/S0044457X23600548
  6. De Andrade Querino A.L., de Sousa A.M., Thomas S.R. et al. // J. Inorg. Biochem. 2023. V. 247. P. 112346. https://doi.org/10.1016/j.jinorgbio.2023.112346
  7. Li H., Lai C.S., Wu J. et al. // J. Inorg. Biochem. 2007. V. 101. P. 809. https://doi.org/10.1016/j.jinorgbio.2007.01.010
  8. Ishak D.H.A., Ooi K.K., Ang K.-P. et al. // J. Inorg. Biochem. 2014. V. 130. P. 38. https://doi.org/10.1016/j.jinorgbio.2013.09.018
  9. Chan P.F., Ang K.P., Hamid R.A. // J. Biol. Inorg. Chem. 2024. V. 29. P. 217. https://doi.org/10.1007/s00775-023-02041-x
  10. Rosário J.d.S., Moreira F.H., Rosa L.H.F. et al. // Molecules. 2023. V. 28. P. 5921. https://doi.org/10.3390/molecules28155921
  11. Abás E., Aguirre-Ramírez D., Laguna M., Grasa L. // Biomedicines. 2021. V. 9. P. 1775. https://doi.org/10.3390/biomedicines9121775
  12. Луценко И.А., Лосева О.В., Иванов А.В. и др. // Коорд. химия. 2022. Т. 48. № 12. С. 739. https://doi.org/10.31857/S0132344X22700062
  13. Ferreira I.P., de Lima G.M., Paniago E.B. et al. // J. Coord. Chem. 2014. V. 67. P. 1097. https://doi.org/10.1080/00958972.2014.908188
  14. Ratia C., Ballén V., Gabasa Y. et al. // Front. Microbiol. 2023. V. 14. P. 1198473. https://doi.org/10.3389/fmicb.2023.1198473
  15. Hogarth G. // Mini-Rev. Med. Chem. 2012. V. 12. P. 1202. https://doi.org/10.2174/138955712802762095
  16. Adeyemi J.O., Onwudiwe D.C. // Molecules. 2020. V. 25. P. 305. https://doi.org/10.3390/molecules25020305
  17. Loseva O.V., Lutsenko I.A., Rodina T.A. et al. // Polyhedron. 2022. V. 226. P. 116097. https://doi.org/10.1016/j.poly.2022.116097
  18. Корнеева Е.В., Луценко И.А., Беккер О.Б. и др. // Коорд. химия. 2023. Т. 49. № 2. Р. 89. https://doi.org/10.31857/S0132344X22600199
  19. Заева А.С., Иванов А.В., Герасименко А.В., Сергиенко В.И. // Журн. неорган. химии. 2015. Т. 60. № 2. С. 243. https://doi.org/10.7868/S0044457X15020233
  20. Заева А.С., Иванов А.В., Герасименко А.В. // Коорд. химия. 2015. Т. 41. № 10. С. 590. https://doi.org/10.7868/S0132344X15090108
  21. Иванов А.В., Герасименко А.В., Егорова И.В. и др. // Коорд. химия. 2018. Т. 44. № 4. С. 266. https://doi.org/10.1134/S0132344X18040047
  22. Бырько В.М. Дитиокарбаматы. М.: Наука, 1984. 341 с. Sheldrick G.M. // Acta Crystallogr., Sect. A. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370
  23. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
  24. Ramon-García S., Ng C., Anderson H. et al. // Antimicrob. Agents Chemother. 2011. V. 55. P. 3861.https://doi.org/10.1128/AAC.00474-11
  25. Bekker O.B., Sokolov D.N., Luzina O.A. et al. // Med. Chem. Res. 2015. V. 24. P. 2926. https://doi.org/10.1007/s00044-015-1348-2
  26. Bondi A. // J. Phys. Chem. 1964. V. 68. P. 441. https://doi.org/10.1021/j100785a001
  27. Bondi A. // J. Phys. Chem. 1966. V. 70. P. 3006. https://doi.org/10.1021/j100881a503
  28. Hu S.-Z., Zhou Z.-H., Robertson B.E. // Z. Kristallogr. 2009. V. 224. P. 375. https://doi.org/10.1524/zkri.2009.1158
  29. Bocian D.F., Pickett H.M., Rounds T.C., Strauss H.L. // J. Am. Chem. Soc. 1975. V. 97. P. 687. https://doi.org/10.1021/ja00837a001
  30. Boessenkool I.K., Boeyens J.C.A. // J. Cryst. Mol. Struct. 1980. V. 10. № 1–2. P. 11. https://doi.org/10.1007/BF01209549
  31. Новикова Е.В., Исаковская К.Л., Иванов А.В. // Журн. неорган. химии. 2023. Т. 68. № 4. С. 471. https://doi.org/10.31857/S0044457X22601882
  32. Alcock N.W. // Adv. Inorg. Chem. Radiochem. 1972. V. 15. P. 1. https://doi.org/10.1016/S0065-2792(08)60016-3
  33. Wang W., Ji B., Zhang Y. // J. Phys. Chem. A. 2009. V. 113. P. 8132. https://doi.org/10.1021/jp904128b
  34. Scilabra P., Terraneo G., Resnati G. // Acc. Chem. Res. 2019. V. 52. P. 1313. https://doi.org/10.1021/acs.accounts.9b00037
  35. Казицына Л.Α., Куплетская Н.Б. Применение УФ-, ИК-, ЯМР- и масс-спектроскопии в органической химии. М.: Изд-во Моск. ун-та, 1979. 240 с.
  36. Корнеева Е.В., Иванов А.В., Герасименко А.В. и др. // Журн. общ. химии. 2019. Т. 89. № 8. С. 1260. https://doi.org/10.1134/S0044460X19080158
  37. Корнеева Е.В., Новикова Е.В., Лосева О.В. и др. // Коорд. химия. 2021. Т. 47. № 11. С. 707. https://doi.org/10.31857/S0132344X2109005X
  38. Yin H.D., Li F., Wang D. // J. Coord. Chem. 2007. V. 60. P. 1133. https://doi.org/10.1080/00958970601008846
  39. Лидин Р.А., Андреева Л.Л., Молочко В.А. Константы неорганических веществ: справочник. М.: Дрофа, 2008. 685 с.
  40. Ларионов С.В., Михалин И.Н., Глинская Л.А. и др. // Журн. неорган. химии. 2004. Т. 49. № 3. С. 380.
  41. Бусев А.И. Аналитическая химия висмута. М.: Изд-во АН СССР, 1953. 383 с.
  42. Okomoto H., Massalski T.B. // Bull. Alloy Phase Diagrams. 1983. V. 4. P. 401. https://doi.org/10.1007/BF02868093
  43. Korneeva E.V., Lutsenko I.A., Zinchenko S.V. et al. // Inorg. Chim. Acta. 2024. V. 572. P. 122318. https://doi.org/10.1016/j.ica.2024.122318

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Projections of the crystal structure of I on the ab (a) and bc (b) planes. The dotted lines show the interionic secondary bonds S···S.

Жүктеу (455KB)
3. Fig. 2. Projection of the crystal structure of II onto the bc plane. The dotted lines show the interionic secondary bonds Cl···S.

Жүктеу (516KB)
4. Fig. 3. Structure of ionic structural units of complex I. Ellipsoids of 50% probability are shown, hydrogen atoms are not shown.

Жүктеу (175KB)
5. Fig. 4. Structure of ionic structural units of complex II. Ellipsoids of 50% probability are shown, hydrogen atoms are not shown. The dotted lines show bonds between atoms of the minor component of the ligands, disordered between two positions with occupancies of 0.520(6) and 0.480(6)/0.507(3) and 0.493(3) in [Au(S2CNHm)2]+, as well as 0.514(6) and 0.486(6) in [Bi2(S2CNHm)2Cl6]2–.

Жүктеу (336KB)
6. Fig. 5. Polyhedral representation of the structure of the inner sphere of bismuth(III) in anions: a – [Bi(S2CNHm)2Cl2]– (I); b – [Bi2(S2CNHm)2Cl6]2– (II).

Жүктеу (238KB)
7. Fig. 6. Method of constructing cation-anionic pseudopolymer chains in structure I; secondary S···S bonds are shown by dotted lines.

Жүктеу (270KB)
8. Fig. 7. TG (a) and DSC (b) curves of complex I. The inset shows a close-up view of the crucible bottom after completion of thermolysis (c).

Жүктеу (451KB)
9. Fig. 8. TG (a) and DSC (b) curves of complex II. The inset shows a close-up view of the crucible bottom after completion of thermolysis (c).

Жүктеу (402KB)
10. Fig. 9. Size, shape of particles (a, b) and energy-dispersive spectra (c, d) of the residual substance (after thermolysis of complex I), reflecting the predominance of Au (c) and Bi2O3 (d).

Жүктеу (362KB)
11. Fig. 10. Size, shape of particles (a, b) and energy-dispersive spectra (c, d) of the residual substance (after thermolysis of complex II) with a predominance of Au (c) and Bi2O3 (d).

Жүктеу (391KB)
12. Table
Жүктеу (245KB)

© Russian Academy of Sciences, 2025