Phase formation and optical properties of vanadium-doped aluminum oxynitride

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The phase formation, morphology, and optical properties of aluminum oxynitride (Al5O6N) doped with vanadium ions were studied in the concentration range of 0.01–5.0 at. % (relative to aluminum). All samples were obtained by calcining mixtures of Al2O3, AlN, and V2O5 at a temperature of 1750°C in a nitrogen flow. The resulting materials were predominantly single-phase γ-AlON with minor impurities of aluminum nitride, as well as VC, VN, VO, or their solid solutions, for vanadium concentrations of ≥0.1 at. %. In AlON:V, the band gap (Eg) ranges from 5.82 to 5.94 eV, depending on the vanadium concentration. The luminescence of AlON:V is attributed to intrinsic defects and impurity luminescence centers. The presence of vanadium in AlON results in an increase in the optical absorption and a decrease in the intensity of intrinsic luminescence, which is caused by the formation of vanadium-containing impurity phases.

Full Text

Restricted Access

About the authors

A. V. Ishchenko

Ural Federal University named after the first President of Russia B.N. Yeltsin

Author for correspondence.
Email: a-v-i@mail.ru
Russian Federation, Mira str., 19, Yekaterinburg, 620002

N. S. Akhmadullin

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: a-v-i@mail.ru
Russian Federation, Leninsky Prospekt, 49, Moscow, 119334

I. I. Leonidov

Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences

Email: a-v-i@mail.ru
Russian Federation, Pervomaiskaya str., 91, Yekaterinburg, 620077

V. P. Sirotinkin

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: a-v-i@mail.ru
Russian Federation, Leninsky Prospekt, 49, Moscow, 119334

I. A. Weinstein

Ural Federal University named after the first President of Russia B.N. Yeltsin; Institute of Metallurgy, Ural Branch, Russian Academy of Sciences

Email: a-v-i@mail.ru
Russian Federation, Mira str., 19, Yekaterinburg, 620002; Amundsen str., 101, Yekaterinburg, 620016

Yu. F. Kargin

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: a-v-i@mail.ru
Russian Federation, Leninsky Prospekt, 49, Moscow, 119334

References

  1. Mittal D., Hostaša J., Silvestroni L. et al. // J. Eur. Ceram. Soc. 2022. V. 42. № 14. P. 6303. https://doi.org/10.1016/j.jeurceramsoc.2022.06.080
  2. Zgalat-Lozynskyy O., Tischenko N., Shirokov O. et al. // J. Mater. Eng. Perform. 2022. V. 31. № 3. P. 2575. https://doi.org/10.1007/s11665-021-06381-0
  3. Jian X., Wang H., Lee M.-H.H. et al. // Materials (Basel). 2017. V. 10. № 7. P. 723. https://doi.org/10.3390/ma10070723
  4. Chen C.F., Yang P., King G. et al. // J. Am. Ceram. Soc. 2016. V. 99. № 2. P. 424. https://doi.org/10.1111/jace.13986
  5. Akhmadullina N.S., Ishchenko A.V., Yagodin V.V. et al. // Inorg. Mater. 2019. V. 55. № 12. P. 1223. https://doi.org/10.1134/S002016851912001X
  6. Zhang L., Luo H., Zhou L. et al. // J. Am. Ceram. Soc. 2018. V. 101. № 8. P. 3299. https://doi.org/10.1111/jace.15494
  7. Ayman M.T., Chung W.J., Lee H. et al. // J. Eur. Ceram. Soc. 2022. V. 42. № 4. P. 1348. https://doi.org/10.1016/j.jeurceramsoc.2021.12.015
  8. Chen L., Du F., Liang Y. et al. // Displays. 2022. V. 71. P. 102147. https://doi.org/10.1016/j.displa.2021.102147
  9. Akhmadullina N.S., Ishchenko A. V., Lysenkov A.S. et al. // J. Alloys Compd. 2021. V. 887. P. 161410. https://doi.org/10.1016/j.jallcom.2021.161410
  10. Zhang J., Ma C., Wen Z. et al. // Opt. Mater. (Amst). 2016. V. 58. P. 290. https://doi.org/10.1016/j.optmat.2016.05.048
  11. Shao Z., Ren S. // Nanoscale Adv. 2020. V. 2. № 10. P. 4341. https://doi.org/10.1039/D0NA00519C
  12. Latief U., Islam S.U., Khan M.S. // J. Alloys Compd. 2023. V. 941. P. 168985. https://doi.org/10.1016/j.jallcom.2023.168985
  13. Fuertes V., Fernández J.F., Enríquez E. // Optica. 2019. V. 6. № 5. P. 668. https://doi.org/10.1364/OPTICA.6.000668
  14. Yao A., Zhou X., Wu W. et al. // Chem. Phys. 2021. V. 546. P. 111170. https://doi.org/10.1016/j.chemphys.2021.111170
  15. Liu L., Zhang J., Wang X. et al. // Mater. Lett. 2020. V. 258. P. 126811. https://doi.org/10.1016/j.matlet.2019.126811
  16. Dong Q., Yang F., Cui J. et al. // Ceram. Int. 2019. V. 45. № 9. P. 11868.https://doi.org/10.1016/j.ceramint.2019.03.069
  17. Ishchenko A.V., Akhmadullina N.S., Leonidov I.I. et al. // J. Alloys Compd. 2023. V. 934. P. 167792.https://doi.org/10.1016/j.jallcom.2022.167792
  18. Ishchenko A.V., Akhmadullina N.S., Leonidov I.I. et al. // Phys. B Condens. Matter 2024. V. 695. P. 416593.https://doi.org/10.1016/j.physb.2024.416593
  19. Ищенко А.В., Ахмадуллина Н.С., Пастухов Д.А. и др. // Неорганические материалы 2024. V. 60. № 3. P. 322.https://doi.org/10.31857/S0002337X24030083
  20. Diana P., Sebastian S., Saravanakumar S. et al. // Phys. Scr. 2023. V. 98. № 3. P. 035825.https://doi.org/10.1088/1402-4896/acb7b1
  21. Dorn M., Kalmbach J., Boden P. et al. // J. Am. Chem. Soc. 2020. V. 142. № 17. P. 7947.https://doi.org/10.1021/jacs.0c02122
  22. Đačanin Far L., Dramićanin M. // Nanomaterials. 2023. V. 13. № 21. P. 2904.https://doi.org/10.3390/nano13212904
  23. Pan J., Hansen H.A., Vegge T. // J. Mater. Chem. A 2020. V. 8. № 45. P. 24098.https://doi.org/10.1039/D0TA08313E
  24. Шестаков В.А., Селезнев В.А., Мутилин С.В. и др. // Журн. неорган. химии. 2023. Т. 68. № 5. С. 651.https://doi.org/10.31857/S0044457X23600019
  25. Подвальная Н.В., Захарова Г.С. // Журн. неорган. химии. 2023. Т. 68. № 3. С. 300.https://doi.org/10.31857/S0044457X22601389
  26. Сидоров И., Жилинский В.В., Новиков В.П. // Неорган. материалы. 2023. Т. 59. № 6. С. 638.https://doi.org/10.31857/S0002337X23060131
  27. Akhmadullina N.S., Lysenkov A.S., Konovalov A.A. et al. // Ceram. Int. 2022. V. 48. № 9. P. 13348.https://doi.org/10.1016/j.ceramint.2022.01.215
  28. Doebelin N., Kleeberg R. // J. Appl. Crystallogr. 2015. V. 48. № 5. P. 1573. https://doi.org/10.1107/S1600576715014685
  29. Solomonov V.I., Michailov S.G., Lipchak A.I. et al. // Laser Phys. 2006. V. 16. № 1. P. 126.https://doi.org/10.1134/S1054660X06010117
  30. Ларионов В.А., Гуляева Р.И., Нифонтова Е.А. // Неорган. материалы. 2023. Т. 59. № 1. С. 61.https://doi.org/10.31857/S0002337X23010141
  31. Batyrev I.G., Taylor D.E., Gazonas G.A. et al. // J. Appl. Phys. 2014. V. 115. № 2. P. 023505.https://doi.org/10.1063/1.4859435
  32. Каргин Ю.Ф., Ахмадуллина Н.С., Лысенков А.С. и др. // Журн. неорган. химии. 2020. Т. 65. № 9. С. 1192.https://doi.org/10.31857/S0044457X20090056
  33. Guo J.J., Wang K., Fujita T. et al. // Acta Mater. 2011. V. 59. № 4. P. 1671.https://doi.org/10.1016/j.actamat.2010.11.034
  34. Zheng K., Wang H., Xu P. et al. // J. Eur. Ceram. Soc. 2021. V. 41. № 7. P. 4319.https://doi.org/10.1016/j.jeurceramsoc.2021.02.047
  35. Kudyakova V.S., Leonidov I.I., Chaikin D.V. et al. // Ceram. Int. 2021. V. 47. № 12. P. 16876. https://doi.org/10.1016/j.ceramint.2021.02.263
  36. Алтахов А.С., Горбунов Р.И., Кашарина Л.А. и др. // Письма в журнал технической физики 2016. Т. 42. № 21. С. 32. https://doi.org/10.21883/PJTF.2016.21.43838.16357
  37. Kubelka P., Munk F. // Z. Tech. Phys 1931. V. 12. P. 593.
  38. Du X., Yao S., Jin X. et al. // J. Phys. D. Appl. Phys. 2015. V. 48. № 34. P. 345104. https://doi.org/10.1088/0022-3727/48/34/345104
  39. Tauc J. // Mater. Res. Bull. 1968. V. 3. № 1. P. 37. https://doi.org/10.1016/0025-5408(68)90023-8
  40. Zhang X., Gao S., Li Z. et al. // Ceram. Int. 2019. V. 45. № 6. P. 7778. https://doi.org/10.1016/j.ceramint.2019.01.082
  41. Spiridonov D.M., Weinstein I.A., Vokhmintsev A.S. et al. // Bull. Russ. Acad. Sci. Phys. 2015. V. 79. № 2. P. 211. https://doi.org/10.3103/S106287381502029X

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Diffraction patterns of samples in linear (a) and logarithmic (b) scales of AlON:V samples. The question mark (?) marks the peaks of unidentified phases. Reference reflections, their designations and PDF cards for V₆C₅, VN and VO are marked in the corresponding colors.

Download (840KB)
3. Fig. 2. Dependence of the concentration of the vanadium-containing phase (a) and the lattice constant of AlON (b) on the concentration of vanadium. VX is the vanadium-containing phase, where X = C, N or O.

Download (102KB)
4. Fig. 3. SEM image of the surface of the AlON:5V sample measured with a BSE detector (a) and element distribution maps: Al (b), O (c), V (d), N (e) and C (e). Light particles (a) contain elements with a higher atomic number (vanadium) than the gray ones. White dots mark the areas of elemental microanalysis, the composition is given in Table 1.

Download (1MB)
5. Fig. 4. Raman spectra of AlON with 0.01, 0.1, 1 and 5 at.% V; D and G are bands of amorphous carbon.

Download (237KB)
6. Fig. 5. Diffuse reflection spectra (a), absorption spectra (b), absorption spectra in Tauc coordinates of AlON:V samples without preliminary correction (c) and with preliminary correction (d).

Download (697KB)
7. Fig. 6. Dependences of the reflection coefficient at a wavelength of 400 nm R(400 nm) and the optical gap width Eg of AlON:V samples on the vanadium concentration. The circles show the experimental values, the dotted lines show the approximating curves in the form of hyperbolic and exponential functions for R and Eg, respectively.

Download (95KB)
8. Fig. 7. PCL spectra of AlON:V samples (a), decomposition of the PCL spectrum into luminescence band components using the example of the AlON:0.01V sample (b), dependence of the PCL intensity on the vanadium content in the AlON:V samples (c). The dotted line shows the result of approximating the experimental data with a hyperbolic function.

Download (570KB)

Copyright (c) 2025 Russian Academy of Sciences