Coordination Compounds of Yttrium(III) with Urea and Dimethylacetamide: Composition, Structure, Thermal Behavior

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Coordination compounds of yttrium(III) nitrate with urea (Ur) and N,N-dimethylacetamide, [Y(H2O)(Ur)2(NO3)3] (I), [Y(Ur)3(NO3)3] (II) and [Y(DMAA)3(NO3)3] (III), were synthesized; their compositions, structural features and thermolysis were studied with the use of elemental analysis, IR spectroscopy, X-ray powder and single-crystal diffraction, thermal gravimetric analysis, differential scanning calorimetry. The coordination compounds can be used for the synthesis of nano-scale yttrium(III) oxide.

Texto integral

Acesso é fechado

Sobre autores

E. Bettels

MIREA — Russian Technological University

Email: savinkina@mirea.ru
Rússia, Moscow, 119571

M. Polukhin

MIREA — Russian Technological University

Email: savinkina@mirea.ru
Rússia, Moscow, 119571

I. Karavaev

MIREA — Russian Technological University

Email: savinkina@mirea.ru
Rússia, Moscow, 119571

E. Savinkina

MIREA — Russian Technological University

Autor responsável pela correspondência
Email: savinkina@mirea.ru
Rússia, Moscow, 119571

G. Buzanov

Kurnakov Institute of General and Inorganic Chemistry

Email: savinkina@mirea.ru
Rússia, Moscow, 119991

A. Kubasov

Kurnakov Institute of General and Inorganic Chemistry

Email: savinkina@mirea.ru
Rússia, Moscow, 119991

V. Retivov

Kurchatov Institute National Research Center

Email: savinkina@mirea.ru
Rússia, Moscow, 123182

Bibliografia

  1. Hao S.J., Wang C., Liu Т. L. et al. // Int. J. Hydrogen. Energy. 2017. V. 42. P. 29949. https://doi.org/10.1016/j.ijhydene.2017.08.143
  2. Cho G.Y., Yu W., Lee Y.H. et al. // Int. J. Precis. Eng. Manuf.-Green Technol. 2020. V. 7. P. 423. https://doi.org/10.1007/s40684-019-00082-9
  3. Сарин В.А., Буш А.А. // Тонкие химические технологии. 2021. Т. 16. № 2. С. 55.
  4. Pan C., Huang B.H., Fan C. et al. // Rare Metals. 2020. V. 40. P. 1785. https://doi.org/10.1007/s12598-020-01475-5
  5. Gao W., Wen D., Ho I.C., Qu Y. // Mater. Today Chem. 2019. V. 12. P. 266. https://doi.org/10.1016/j.mtchem.2019.02.002
  6. Zhang R., Tu Z.A., Meng S. et al. // Rare Metals. 2023. V. 42. P. 176. https://doi.org/10.1007/s12598-022-02136-5
  7. Shimoda N., Kimura Y., Kobayashi Y. et al. // Int. J. Hydrogen. Energy. 2017. V. 42. P. 29745. https://doi.org/10.1016/j.ijhydene.2017.10.108
  8. Hao J., Studenikin S.A., Cocivera M. // J. Lumin. 2001. V. 93. P. 313. https://doi.org/10.1016/S0022-2313(01)00207-1
  9. Diego-Rucabado A., Segura A., Aguado F. et al. // J. Lumin. 2022. V. 252. P. 119378. https://doi.org/10.1016/j.jlumin.2022.119378
  10. Hasabeldaim E., Swart H.C., Kroon R.E. // Phys. B: Condens. Matter. 2023. V. 671. P. 415417. https://doi.org/10.1016/j.physb.2023.415417
  11. Bernard-Granger G., Guizard C., San-Miguel L. // J.Am. Ceram. Soc. 2007. V. 90. № 9. P. 2698. https://doi.org/10.1111/j.1551-2916.2007.01759.x
  12. Saratale R.G., Karuppusamy I., Saratale G.D. et al. // Colloids Surf., B. 2018. V. 180. P. 20. https://doi.org/10.1016/j.colsurfb.2018.05.045
  13. Rajakumar G., Mao L., Bao T. et al. // Appl. Sci. 2021. V. 11. № 5. P. 2172. https://doi.org/10.3390/app11052172
  14. Kannan S.K., Sundrarajan M. // Bull. Mater. Sci. 2015. V. 38. P. 945. https://doi.org/10.1007/s12034-015-0927-7
  15. Nagajyothi P.C., Pandurangan M., Veerappan M. et al. // Mater. Lett. 2018. V. 216. P. 58. https://doi.org/10.1016/j.matlet.2017.12.081
  16. Mariano-Torres J.A., Lopez-Marure A., Garcia-Hernandez M. et al. // Mater. Trans. 2018. V. 59. № 12. P. 1915. https://doi.org/10.2320/matertrans.M2018248
  17. Gaponov A.V. // Phys. B: Condens. Matter. 2022. V. 639. P. 414010. https://doi.org/10.1016/j.physb.2022.414010
  18. Li N., Yanagisawa K. // J. Solid State Chem. 2008. V. 181. № 8. P. 1738. https://doi.org/10.1016/j.jssc.2008.03.031
  19. Abdulghani A.J., Al-Ogedy W.M. // Iraqi J. Sci. 2015. V. 56. № 2. P. 1572.
  20. Levashov E.A., Mukasyan A.S., Rogachev A.S., Shtansky D.V. // Int. Mater. Rev. 2017. V. 62. № 4. P. 203. https://doi.org/10.1080/09506608.2016.1243291
  21. Gizowska M., Piatek M., Perkowski K. et al. // Nanomater. 2020. V. 10. № 5. P. 831. https://doi.org/10.3390/nano10050831
  22. Chen K., Peng J., Srinivasakannan C. et al. // J. Alloys Compd. 2018. V. 742. P. 13. https://doi.org/10.1016/j.jallcom.2018.01.258
  23. Savinkina E.V., Karavaev I.A., Grigoriev M.S. et al. // Inorg. Chim. Acta. 2022. V. 532. P. 120759. https://doi.org/10.1016/j.ica.2021.120759
  24. Savinkina E.V., Karavaev I.A., Grigoriev M.S. // Polyhedron. 2020. V. 192. P. 114875. https://doi.org/10.1016/j.poly.2020.114875
  25. Караваев И.А., Савинкина Е.В., Григорьев М.С. и др. // Журн. неорган. химии. 2020. Т. 67. № 8. С. 1080.
  26. Петричко М.И., Караваев И.А., Савинкина Е.В. и др. // Журн. неорган. химии. 2023. Т. 68. № 4. С. 482.
  27. Mangalaja R.V., Mouzon J., Hedstrom P. et al. // Powder Technol. 2009. V. 191. № 3. P. 309. https://doi.org/10.1016/j.powtec.2008.10.019
  28. Ryskaliyeva A.K., Baltbayev M.E., Zhubatova A.M. // Acta. Chim. Slov. 2018. V. 65. P. 127. https://doi.org/10.17344/acsi.2017.3683
  29. Koslowski N., Hoffmann R.C., Trouillet V. et al. // RSC Adv. 2019. V. 9. P. 31386. https://doi.org/10.1039/C9RA05348D
  30. Худайбергенова Н., Сулайманкулов К. // Журн. неорган. химии. 1981. Т. 26. С. 1156.
  31. Bruker, SAINT, Bruker AXS Inc., Madison, WI, 2018.
  32. Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Crystallogr. 2015. V. 48. № 1. P. 3. https://doi.org/10.1107/S1600576714022985
  33. Sheldrick G.M. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  34. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. P. 339 https://doi.org/10.1107/S0021889808042726
  35. Накамото К. // ИК-спектры и спектры КР неорганических и координационных соединений. М.: Мир, 1991.
  36. Hay B.P., Hancock R.D. // Coord. Chem. Rev. 2001. V. 21. № 1. P. 61. https://doi.org/10.1016/S0010-8545(00)00366-0
  37. Hay B.P., Clement O., Sandrone G., Dixon D.A. // Inorg. Chem. 1998. V. 37. № 22. P. 5887. https://doi.org/10.1021/ic980641j
  38. Schaber P.M., Colson J., Higgins S. et al. // Thermochim. Acta. 2004. V. 424. P. 131. https://doi.org/10.1016/j.tca.2004.05.018

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Appendix
Baixar (15MB)
3. Scheme 1. Scheme for the synthesis of complex compounds I, II and III.

Baixar (161KB)
4. Fig. 1. Diffractograms of precursors and isolated complexes: 1 - Ur, 2 - Y(NO3)3 - 6H2O, 3 - III (exp.), 4 - III (theor.), 5 - I (exp.), 6 - I (theor.), 7 - II (exp.), 8 - II (theor.).

Baixar (269KB)
5. Fig. 2. Molecular structures of complexes I (a), II (b), III (c).

Baixar (452KB)
6. Fig. 3. Thermograms of complexes I (a) and III (b) in air; 1 - mass loss curve, 2 - differential curve.

Baixar (278KB)
7. Fig. 4. Diffraction patterns of Y2O3 preparations obtained by annealing complexes III (1), I (2), II (3) in air.

Baixar (162KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024