Features of the Structure and Thermal Properties of LnBWO6 (La = Ln, La0.999Nd0.001, La0.99Gd0.01) Synthesized by the Sol-Gel Method

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Borate tungstates LnBWO6 (Ln = La, La0.999Nd0.001, La0.99Gd0.01) were synthesized by the Pechini method with subsequent annealing of intermediates. They were analyzed by X-ray diffraction (XRD) and DSC methods. Crystallographic parameters of synthesized LnBWO6 were refined by powder X-ray diffraction in two systems: monoclinic, space group P21, and orthorhombic, space group P222. The presence of reversible first-order phase transitions in synthesized LnBWO6 was detected using the DSC method, and the temperatures and enthalpies of phase transformations were determined. It has been shown that Nd3+ and Gd3+ dopants lowers the L- → H- phase transition temperature of LaBWO6. According to experimental electron paramagnetic resonance (EPR) data gadolinium has two independent positions in the La0.99Gd0.01BWO6 structure.

Sobre autores

V. Krut’ko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: kroutko@igic.ras.ru
Rússia, Moscow, 119991

M. Komova

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: kroutko@igic.ras.ru
Rússia, Moscow, 119991

R. Svetogorov

National Research Center “Kurchatov Institute”

Email: kroutko@igic.ras.ru
Rússia, Moscow, 123182

A. Khoroshilov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: kroutko@igic.ras.ru
Rússia, Moscow, 119991

N. Efimov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: kroutko@igic.ras.ru
Rússia, Moscow, 119991

E. Ugolkova

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: kroutko@igic.ras.ru
Rússia, Moscow, 119991

Bibliografia

  1. Lu-Ling Li, Xiao-Yu Yue, Wen-Jing Zhang et al. // Chin. Phys. B. 2021. V. 30. P. 916. https://doi.org/10.1088/1674-1056/abf 916
  2. Dai J., Zhao D., Zhang R.J. et al. //J. Alloys Compd. 2022. P. 891. https://doi.org/ 10.1016/j.jallcom.2021.161973
  3. Jin X.Y., Xie Y., Tang R. et al. //J. Alloys Compd. 2022. P. 899. https://doi.org/10.1016/j.jallcom.2021.162739
  4. Flavián D., Nagl J., Hayashida S. et al. // Phys. Rev. B. 2023. V. 107. P. 174406. https://doi.org/10.1103/PhysRevB.107.174406
  5. Крутько В.А., Комова М.Г., Поминова Д.В. // Неорган. материалы. 2018. Т. 54. № 11. С. 1210. https://doi.org/10.1134/S0002337X1811009X
  6. Sun C.X., Lin Z.B., Zhang L.Z. et al. //Chin. J. Struct. Chem. 2013. V. 32. P. 1088. https://www.researchgate.net/publication/283843691
  7. Kaminskii A.A. // Quantum Electronics. 2019. V. 49. P. 377. https://doi.org/10.1070/QEL16980
  8. Xiong F.B., Chen H., Lin H.F. et al. // J. Lumin. 2019. V. 209. P. 89. https://doi.org/10.1016/j.jlumin.2019.01.034]
  9. Крутько В.А., Комова М.Г., Поминова Д.В. и др. //Неорган. материалы. 2023. Т. 59. № 9. https://doi.org/10.31857/S0002337X23090087
  10. Li B., Huang X., Guo H. et al. // Dyes and Pigments. 2018. V. 150. P. 67. https:// doi.org/10.1016/j.dyepig.2017.11.003
  11. Xiong F.B., Lin H.F., Ma Z. et al. // Opt. Mater. 2017. V. 66. P. 474. https://doi.org/10.1016/j.optmat.2017.03.002
  12. Gancheva M., Aleksandrov L., Iordanova R. et al. // J. Chem. Technol. Metallurgy. 2015. V. 50. P. 467.
  13. Aleksandrov L., Komatsu T., Shinozaki K. et al. // J. Non-Cryst. Solids. 2015. V. 429. P. 171. https://doi.org/10.1016/j.jnoncrysol.2015.09.004
  14. Zhu D., Mu Z. // Displays. 2014. V. 35. P. 261. https://doi.org/10.1016/j.displa.2014.09.005
  15. Aleksandrov L., Iordanova R., Dimitriev Y. et al. // Opt. Mater. 2014. V. 36. P. 1366. https:// doi.org/10.1016/j.optmat.2014.03.031
  16. Huang Y., Seo H.J. // Mater. Lett. 2012. V. 84. P.107. https://doi.org/10.1016/j.matlet.2012.06.051
  17. Джуринский Б.Ф., Резник Е.М., Тананаев И.В. // Журн. неорган. химии. 1980. Т. 25. № 11. С. 2981.
  18. Палкина К.К., Сайфуддинов В.З., Кузнецов В.Г. и др. // Журн. неорган. химии. 1979. Т. 24. № 5. С. 1193.
  19. Джуринский Б.Ф., Лысанова Г.В. // Журн. неорган. химии. 1998. Т. 43. № 12. С. 2065.
  20. Aleksandrov L., Komatsu T., Iordanova R. et al. //Opt. Mater. 2011. V. 34. P. 201. https://doi.org/10.1016/j.optmat.2011.08.002
  21. Becker P., van der Wolf B., Bohat´y L. et al. //Laser Phys. Lett. 2008. V. 5. P. 737. https://doi.org/10.1002/lapl.200810056
  22. Zhao W., Zhang L., Wang G. et al. // Opt. Mater. 2009. V. 31. P. 849. https://doi.org/10.1016/j.optmat.2008.09.010
  23. Svetogorov R.D., Dorovatovskii P.V., Lazarenko V.A. // Cryst. Res. Technol. 2020. V. 55. № 5. P. 1900184. https://doi.org/10.1002/crat.201900184
  24. Светогоров Р.Д. // Авторское свидетельство о государственной регистрации права № 2018660965.
  25. Petricek V., Dusek M., Palatinus L. // Z. Kristallogr. 2014. V. 229. № 5. P. 345. https://doi.org/10.1515/zkri-2014-1737
  26. Shannon R.D. // Acta Crystallogr., Sect. A. 1976. V. 32. P. 751.
  27. Абрагам А., Блини Б. Электронный парамагнитный резонанс переходных ионов. Пер. с англ. М.: Мир, 1972. Т. 1. 651 с.; Т. 2. 349 с.
  28. lford G.G., Belford R.L., Burkhaven J.F. // J. Magn. Reson. 1973. V. 11. P. 251.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024