Оценка хансеновских параметров низкоразмерных частиц слоистых дихалькогенидов ванадия, ниобия и тантала

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Методом жидкофазной эксфолиации при ультразвуковой обработке получены низкоразмерные флейки слоистых дихалькогенидов TaX2 (X = S, Se, Te), VSe2 и NbSe2. Путем измерения оптической плотности дисперсии в различных жидких средах приближенно установлены хансеновские параметры этих соединений. Показано, что содержание низкоразмерных частиц дихалькогенидов в образце возрастает при уменьшении хансеновской дистанции между дихалькогенидами и эксфолиационной средой. Предложен способ качественно оценить влияние эксфолиационной среды на размер формирующихся в процессе эксфолиации частиц и показано, что уменьшение абсолютного значения параметров δполярный и δводородный в изученных системах приводит к уменьшению размера получаемых флейков.

Об авторах

К. С. Никонов

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Автор, ответственный за переписку.
Email: nikonovk.s@yandex.ru
Россия, Ленинский пр-т, 31, Москва, 119991

Т. К. Менщикова

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: nikonovk.s@yandex.ru
Россия, Ленинский пр-т, 31, Москва, 119991

М. Н. Бреховских

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: nikonovk.s@yandex.ru
Россия, Ленинский пр-т, 31, Москва, 119991

Список литературы

  1. Coleman J.N., Lotya M., O’Neill A. et al. // Science. 2011. V. 331. № 6017. Р. 568. https://doi.org/10.1126/science.1194975
  2. Hildebrand H.J. Solubility of Non-electrolytes. N.Y.: Reinhold Publ. Corp., 1936. 203 p.
  3. Süß S., Sobisch T., Peukert W. et al. // Adv. Powder Technol. 2018. V. 29. № 7. P. 1550. https://doi.org/10.1016/j.apt.2018.03.018
  4. Venkatram Sh., Kim Ch., Chandrasekaran A., Ramprasad R. // J. Chem. Inf. Model. 2019. V. 59. № 10. P. 4188. https://doi.org/10.1021/acs.jcim.9b00656
  5. Садовников С.И. // Журн. неорган. химии. 2023. V. 68. № 3. P. 411. https://doi.org/10.31857/S0044457X22601559
  6. Mathieu D. // ACS Omega. 2018. V. 3. № 12. P. 17049. https://doi.org/10.1021/acsomega.8b02601
  7. Gilliam M.S., Yousaf A., Guo Y., et al. // Langmuir. 2021. V. 37. № 3. Р. 1194. https://doi.org/10.1021/acs.langmuir.0c03138
  8. Cunningham G., Lotya M., Cucinotta C.S. et al. // ACS Nano. 2012. V. 6. № 4. P. 3468. https://doi.org/10.1021/nn300503e
  9. Kumar S., Pratap S., Joshi N. et al. // Micro and Nanostructures. 2023. V. 181. P. 207627. https://doi.org/10.1016/j.micrna.2023.207627
  10. Eaglesham D.J., Withers R.L., Bird D.M. // J. Phys. C: Solid State Phys. 1986. V. 19. № 3. P. 359. https://doi.org/10.1088/0022–3719/19/3/006
  11. Xi X., Zhao L., Wang Z. et al. // Nature Nanotech. 2015. V. 10. P. 765. https://doi.org/10.1038/nnano.2015.143
  12. Zhou L., Sun Ch., Li X. et al. // Nano Express. 2020. V. 15. P. 20. https://doi.org/10.1186/s11671-020-3250-1
  13. Mahajan M., Kallatt S., Dandu M. et al. // Commun. Phys. 2019. V. 2. Р. 88. https://doi.org/10.1038/s42005-019-0190-0
  14. Wu J., Peng J., Yu Zh. et al. // J. Am. Chem. Soc. 2018. V. 140. № 1. Р. 493. https://doi.org/10.1021/jacs.7b11915
  15. Yang W., Gan L., Li H. et al. // Inorg. Chem. Front. 2016. V. 3. Р. 433. https://doi.org/10.1039/C5QI00251F
  16. Jia Y., Liao Y., Cai H. // Nanomaterials. 2022. V. 12. P. 2075. https://doi.org/10.3390/nano12122075
  17. Wang J., Guo C., Guo W. et al. // Chinese Phys. B. 2019. V. 28. № 4. Р. 046802. https://doi.org/10.1088/1674-1056/28/4/046802
  18. Li H., Tan Y., Liu P. et al. // Adv. Mater. 2016. V. 28. № 40. P. 8945. https://doi.org/10.1002/adma.201602502
  19. Wang F., Mao J. // Mater. Horiz. 2023. V. 10. № 5. P. 1780. https://doi.org/10.1039/D3MH00072A
  20. Никонов К.С., Ильясов А.С., Бреховских М.Н. // Журн. неорган. химии. 2020. Т. 65. № 9. С. 1222. https://doi.org/10.1134/S0036023620090120
  21. Yang L., Zhao R., Wu D. et al. // Sensors. 2021. V. 21. № 1. P. 239. https://doi.org/10.3390/s21010239
  22. Hansen Ch.M. Hansen Solubility Parameters: A User’s Handbook. Boca Raton, London, NY: CRC Press, 2007. 544 p.
  23. Segets D., Gradl J., Taylor R.К. et al. // ACS Nano. 2009. V. 3. № 7. Р. 1703. https://doi.org/10.1021/nn900223b

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024