Influence of environment and intramolecular vibrations on the kinetics of occupancy of the triplet state of the donor molecule

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Within the framework of the stochastic approach, a numerical study of the kinetics of occupancy of the triplet state of an electron donor molecule caused by photoinduced electron transfer from the donor to the paramagnetic acceptor and back is performed. The conditions are determined, and a general strategy for achieving the maximum efficiency of triplet molecule accumulation induced by the electron transfer is stated. Solvents with fast dielectric relaxation are shown to contribute to increasing the efficiency of the process involved.

Texto integral

Acesso é fechado

Sobre autores

E. Minakova

Volgograd State University

Email: mikhailova.va@volsu.ru
Rússia, Volgograd

E. Mikhailova

Volgograd State University

Email: mikhailova.va@volsu.ru
Rússia, Volgograd

V. Mikhailova

Volgograd State University

Autor responsável pela correspondência
Email: mikhailova.va@volsu.ru
Rússia, Volgograd

Bibliografia

  1. Фотосинтез / Под ред. Говинджи. М.: Мир, 1987. Т. 1. 727 с.
  2. Mims D., Herpich J., Lukzen N.N. et al. // Science. 2021. V. 374. P. 1470. https://doi.org/10.1126/science.abl4254
  3. Багрянский В.А., Боровков В.И, Молин Ю.Н. // Успехи химии. 2007. Т. 76. С. 535. https://doi.org/10.1070/RC2007v076n06ABEH003715 [Bagryansky V.A., Borovkov V.I., Molin Yu.N. // Rus. Chem. Reviews. 2007. V. 76. P. 493. https://doi.org/10.1070/RC2007v076n06ABEH003715]
  4. Овченкова Е.Н., Бичанa Н.Г., Ломова Т.Н. // Журн. физ. химии. 2022. Т. 96. № 4. С. 502. https://doi.org/10.31857/S0044453722040252
  5. Buchachenko A.L., Step E.N., Ruban V.L., Turro N.J. // Chem. Phys. Lett. 1995. V. 223. P. 315.
  6. Иванов А.И., Михайлова В.А., Феськов С.В. // Журн. физ. химии. 1998. Т. 72. № 11. С. 2027. [Ivanov A.I., Mikhailova V.A., Fes’kov S.V. // Rus. J. of Phys. Chem. A. 1998. V. 72. № 11. P. 1843.]
  7. Грампп Г., Иванов А.И., Кучин А.В. // Журн. физ. химии. 2001. Т. 75. № 12. С. 2249. [Grampp G., Ivanov A.I., Kuchin A.V. // Rus. J. of Phys. Chem. A. 2001. V. 75. № 12. P. 2062.]
  8. Fayed T.A., Grampp G., Landgraf S. // Int. J. Photoenergy. 1999. V. 1. P. 173.
  9. Иванов А.И., Михайлова В.А., Феськов С.В. // Журн. физ. химии. 1997. Т. 71. № 8. С. 1487. [Ivanov A.I., Mikhailova V.A., Fes’kov S.V. // Rus. J. of Phys. Chem. A. 1997. V. 71. № 8. P. 1346.]
  10. Минакова Е.Н., Михайлова Е.А., Михайлова В.А. // Изв. УНЦ РАН. 2022. № 1. С. 30. https://doi.org/10.31040/2222-8349-2022-0-1-30-34
  11. Ivanov A.I., Mikhailova V.A., Volodin F.V. // Chem. Phys. 1995. V. 197. P. 19. https://doi.org/10.1016/0301-0104(95)00142-B
  12. Zusman L.D. // Chem. Phys. 1980. V. 49. P. 295. https://doi.org/10.1016/0301-0104(80)85267-0
  13. Fedunov R.G., Feskov S.V., Ivanov A.I. et al. // Chem. Phys. 2004. V. 121. P. 3643. https://doi.org/10.1063/1.1772362
  14. Ionkin V.N., Ivanov A.I. // Chem. Phys. 2009. V. 360. P. 137. https://doi.org/10.1016/j.chemphys.2009.04.024
  15. Иванов А.И., Михайлова В.А. // Успехи химии. 2010. Т. 79. № 12. С. 1139. [Ivanov A.I., Mikhailova V.A. // Russ. Chem. Rev. 2010. V. 79. P. 1047. https://doi.org/10.1070/RC2010v079n12ABEH004167]
  16. Feskov S.V., Mikhailova V.A., Ivanov A.I. // J. Photochem. Photobiol. C. 2016. V. 29. P. 48. https://doi.org/10.1016/j.jphotochemrev.2016.11.001
  17. Mikhailova T.V., Mikhailova V.A., Ivanov A.I. // J. Phys. Chem. B. 2016. V. 120. P. 11987. https://doi.org/10.1021/acs.jpcb.6b09363
  18. Marcus R.A. // J. Chem. Phys. 1956. V. 24. P. 966. https://doi.org/10.1063/1.1742723
  19. Garg A., Onuchic J.N., Ambegaokar V. // J. Chem. Phys. 1985. V. 83. P. 4491.
  20. Sumi H., Marcus R.A. // J. Chem. Phys. 1986. V. 84. P. 4894. https://doi.org/10.1063/1.449978
  21. Barbara P.F., Meyer T.J., Ratner M.A. // J. Phys. Chem. 1996. V. 100. P. 13148.
  22. Bixon M., Jortner J. Electron Transfer: From Isolated Molecules to biomolecules. // Advances in Chemical Physics. 1999. V. 106. P. 35.
  23. Barzykin A.V., Frantsuzov P.A., Seki K., Tachiya M. // Advances in Chemical Physics. 2002. V. 123. P. 511.
  24. Mikhailova V.A., Malykhin R.E., Ivanov A.I. // Photochem. Photobiol. Sci. 2018. V. 17. P. 607. https://doi.org/10.1039/C7PP00464H
  25. Maroncelli M., Kumar V.P., Papazyan A.A. // J. Phys. Chem. 1993. V. 97. P. 13. https://doi.org/10.1021/j100103a004
  26. Horng M.L., Gardecki J.A., Papazyan A. et al. // Ibid. 1995. V. 99. P. 17311. https://doi.org/10.1021/j100048a004
  27. Nazarov A.E., Fedunov R.G., Ivanov A.I. // Computer Physics Communications. 2017. V. 210. P. 172. https://doi.org/10.1016/j.cpc.2016.09.015
  28. Hsieh C.C., Cheng Y.M., Hsu C.J. et al. // J. Phys. Chem. A. 2008. V. 112. P. 8323. https://doi.org/10.1021/jp804216u
  29. Hsieh C.C., Jiang C.M., Chou P.T. // Acc. Chem. Res. 2010. V. 43. P. 1364. https://doi.org/10.1021/ar1000499
  30. Chou P.T., Yu W.S., Cheng Y.M. et al. // J. Phys. Chem. A. 2004. V. 108. P. 6487. https://doi.org/10.1021/jp048415k
  31. Chou P.T., Pu S.C., Cheng Y.M. et al. // J. Phys. Chem. A. 2005. V. 109. P. 3777. https://doi.org/10.1021/jp044205w
  32. Mikhailova T.V., Mikhailova V.A., Ivanov A.I. // J. Phys. Chem. B. 2017. V. 121. P. 4569. https://doi.org/ 10.1021/acs.jpcb.7b02537
  33. Temkin O.N. Homogeneous catalysis with metal complexes: kinetic aspects and mechanisms. John Wiley: Chichester. 2012. 830 p.
  34. Mikhailova V.A., Ivanov A.I. // J. Phys. Chem. C. 2017. V. 121. P. 20629. https://doi.org/10.1021/acs.jpcc.7b06106

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Profiles of the Gibbs free energy surfaces (FES) along the reaction coordinate Q. The dotted lines show vibrationally excited states (only one IMC mode with frequency Ωα is excited). Relaxations of the solvent and vibrations are schematically shown by arrows.

Baixar (198KB)
3. Fig. 2. Population kinetics Ps(s = 1, 2, 3) at different values ​​of │∆G12│ (values ​​are indicated in eV as the argument Ps.).

Baixar (180KB)
4. Fig. 3. Dependences of the effective rate constant of PE on the paramagnetic center k12 on |∆G12| for different values ​​of Erv (values ​​in eV are indicated next to the curves on the left) and τ2 (values ​​in ps are indicated next to the curves on the right).

Baixar (161KB)
5. Fig. 4. k23 dependences on |∆G23|. Calculated parameters: a) 0 – line – without IMC; 1 – 1 IMC with effective frequency Ω1 = 0.17 eV is excited, 2 and 3 – 5 oscillations are excited, parameters Erv (in eV), Δ23 (in eV) are indicated near the curves; b) the values ​​of τ2 (in ps) are indicated next to the curves, Erv = 0.2 eV, Erm = 0.4 eV, V12 = 0.03 eV, ∆12 = 0.04 eV.

Baixar (270KB)
6. Fig. 5. Dependences of  (a) and  (b) on τ2 for different values ​​of │∆G12│ and │∆G23│ (the values ​​are given next to the curves in eV). Calculated parametersErv = 0.2 eV, Erm = 0.4 eV, V12 = 0.03 eV, ∆12 = 0.04 eV.

Baixar (233KB)
7. Fig. 6. Dependences of k23 on ∆23 for different values ​​of │∆G23│ (shown next to the curves in eV). Calculated parametersErv = 0.2 eV, Erm = 0.4 eV, V12 = 0.03 eV, τ2 = 1.52 ps (solid), 3.52 ps (dashed).

Baixar (149KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025