Physical and chemical properties and activity of Mn/γ-Al2O3 catalyst during propane to olefinic hydrocarbon conversion

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The physicochemical and catalytic properties of manganese-modified γ-Al2O3 are described. Using the method of thermoprogrammed ammonia desorption, data on the acid characteristics of Mn-containing catalysts are obtained, and they are found to differ from each other by the distribution and ratio of acid centers of various types. The morphology and structure of particles of Mn/γ-Al2O3 catalysts are studied by high-resolution transmission electron microscopy, and modification of γ-Al2O3 with manganese is shown to change them in no significant way. It is found that the largest amount of olefinic hydrocarbons is formed in the process of propane conversion at 650°C on γ-Al2O3 containing 4.0% manganese and makes up 37.8% at conversion of 58% while the selectivity of formation of lower olefins reaches 64.2%. The amount and nature of coke deposits formed on the surface of Mn-containing catalysts during the propane dehydrogenation reaction are determined by the method of differential thermal analysis. It is shown that in the course of the reaction carbon nanofibers are formed near the catalyst surface and layers of graphite-like carbon on the surface of Al2O3 particles.

Full Text

Restricted Access

About the authors

A. A. Vosmerikov

Institute of Petroleum Chemistry of the Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: antonvosmerikov@gmail.com
Russian Federation, Tomsk, 634055

A. A. Stepanov

Institute of Petroleum Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: antonvosmerikov@gmail.com
Russian Federation, Tomsk, 634055

L. N. Vosmerikova

Institute of Petroleum Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: antonvosmerikov@gmail.com
Russian Federation, Tomsk, 634055

E. Y. Gerasimov

Federal Research Center, G. K. Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences

Email: antonvosmerikov@gmail.com
Russian Federation, Novosibirsk, 630090

A. V. Vosmerikov

Institute of Petroleum Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: antonvosmerikov@gmail.com
Russian Federation, Tomsk, 634055

References

  1. Левин В.О., Потехин В.М., Кудимова М.В. // Нефтепереработка и нефтехимия. Научно-технические достижения и передовой опыт. 2017. Т. 6. С. 28.
  2. Погосян Н.М., Погосян М.Д., Шаповалова О.В. и др. // Нефтегазохимия. 2016. Т. 2. С. 38.
  3. Волкова А.В. Рынок базовых продуктов нефтехимии: олефины и ароматические углеводороды. М.: Национальный исследовательский университет Высшая школа экономики, 2019. 70 с.
  4. Xieqing W., Chaogang X., Zaiting L., Genquan Z. // Practical Advances in Petroleum Processing. 2006. P. 1063.
  5. Yoshimura Y., Kijima N., Hayakawa T. et al. // Catal. Surv. Jpn. 2000. V. 4. P. 157.
  6. Akah A., Williams J., Ghrami M. // Catalysis Surveys from Asia. 2023. V. 4. P. 265.
  7. Fakhroleslam M., Sadrameli S.M. // Fuel. 2019. V. 252. P. 553.
  8. Жоров Ю.М. // Нефтехимия. 1984. Т. 24. № 1. С. 38.
  9. Мухина Т.Н., Барабанов Н.Л., Бабаш С.Е. Пиролиз углеводородного сырья. М.: Химия, 1987. 240 с.
  10. Черных С.П., Адельсон С.В., Мухина Т.Н. // Нефтехимия. 1991. Т. 31. С. 688.
  11. Chen S., Chang X., Sun G., Zhang T. et al. // Chem. Soc. Rev. 2021. V. 5. P. 3315.
  12. Liu S., Zhang B., Liu G. // Reaction Chemistry & Engineering. 2021. V. 6. № 1. P. 9.
  13. Sattler J.J., Ruiz-Martinez J., Santillan-Jimenez E., Weckhuysen B.M. // Chemical Reviews. 2014. V. 519. № 114. P. 10613.
  14. Бабак В.Н., Бабак Т.Б., Закиев С.Е., Холпанов Л.П. // Теорет. осн. хим. технологии. 2009. Т. 43. № 1. С. 78.
  15. Rodemerck U., Stoyanova M., Kondratenko E.V., Linke D. // J. Catal. 2017. V. 352. P. 256.
  16. Choi S.-W., Kim W.-G., So J.-S., Moore J.S. et al. // J. Catal. 2017. V. 345. P. 113.
  17. Chen C., Hu Z., Ren J., Zhang S. et al. // ChemCatChem. 2019. V. 11. P. 868.
  18. Estes D.P., Siddiqi G., Allouche F., Kovtunov K.V. et al. // J. Am. Chem. Soc. 2016. V. 138. P. 14987.
  19. Галанов С.И., Галанов А.И., Смирнов М.Ю., Сидорова О.И. и др. // Изв. Томского политех. ун-та. 2005. Т. 308. № 1. С. 126.
  20. Цырульников П.Г. // Росс. хим. журн. 2007. Т. 51. № 4. С. 133.
  21. Усачев Н.Я., Харламов В.В., Казаков А.В., Беланова Е.П. и др. // Сб. матер. Научно-экспертного совета при Председателе Совета Федерации Федерального Собрания Российской Федерации. 2010. С. 126.
  22. Delmastro A., Gozzelino G., Mazza D. et al. // J. of the Chemical Society. Faraday Transactions. 1992. V. 88. № 14. P. 2065.
  23. Kim S.-M., Lee Y.-J., Bae J.W. et al. // Applied Catalysis A: General. 2008. V. 348. № 1. P. 113.
  24. Morterra C., Magnacca G.A. // Catalysis Today. 1996. V. 27. № 3–4. P. 497.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Diffraction patterns of γ-Al2O3 with different Mn content: 0.0 (1), 2.0 (2), 4.0 (3), 8.0 (4) and 12.0 wt. % (5).

Download (394KB)
3. Fig. 2. IR spectra of γ-Al2O3 with different Mn content: 0.0 (1), 2.0 (2), 4.0 (3), 8.0 (4) and 12.0 wt. % (5).

Download (254KB)
4. Fig. 3. TEM images of the 2.0% Mn/γ-Al2O3 catalyst: a – crystal structure, b – HAADF-STEM image of the morphology of particle agglomerates, c – elemental map of the distribution of aluminum and manganese corresponding to the region in Fig. b.

Download (776KB)
5. Fig. 4. TEM images of the 8.0% Mn/γ-Al2O3 catalyst: a – crystal structure, b – HAADF-STEM image of the morphology of particle agglomerates, c – elemental map of the distribution of aluminum and manganese corresponding to the region in Fig. b, d – EDX spectrum from the corresponding region of Fig. 4c, highlighted by the red circle.

Download (895KB)
6. Fig. 5. TEM images of 8.0% Mn/γ-Al2O3 catalyst particles before the reaction – a and after the reaction – b, the arrows indicate the CNF fragments. TEM images of 2.0% (c) and 8.0% Mn/γ-Al2O3 catalyst (d) after catalysis, the arrows indicate the CNFs.

Download (904KB)
7. Fig. 6. TA curves of catalysts after treatment with propane: a – initial γ-Al2O3, b – 8.0% Mn/γ-Al2O3

Download (397KB)

Copyright (c) 2025 Russian Academy of Sciences