Production of methanol from СО2 on Cu-Zn-catalysts applied on commercial supports: impact of support and reaction conditions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Catalytic properties of Cu-Zn-catalysts on various commercial supports such as Al2O3, SiO2, ZrO2(La), TiO2, ZnO, and activated carbon in the reaction of CO2 hydrogenation with methanol production are studied. The CuZn/Al2O3 catalyst is found to show the highest CO2 conversion; the highest selectivities to methanol equaling 99% and 97.5% are observed in CuZn/ZrO2(La) and CuZn/SiO2 catalysts, respectively, and high CH3OH selectivities of 90–95% are achieved in the temperature range of 175-275°C; and the CuZn/ZrO2(La) catalyst had the highest methanol productivity of 547 g/(kgcat h). The synthesized catalysts are characterized by methods of low-temperature nitrogen adsorption, X-ray phase analysis, and SEM-EDX.

Full Text

Restricted Access

About the authors

A. M. Batkin

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: kyst@list.ru
Russian Federation, Moscow, 119991

M. A. Tedeeva

M. V. Lomonosov Moscow State University

Email: kyst@list.ru

Department of Chemistry

Russian Federation, Moscow, 119991

K. B. Kalmykov

M. V. Lomonosov Moscow State University

Email: kyst@list.ru

Department of Chemistry

Russian Federation, Moscow, 119991

A. V. Leonov

M. V. Lomonosov Moscow State University

Email: kyst@list.ru

Department of Chemistry

Russian Federation, Moscow, 119991

N. A. Davshan

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: kyst@list.ru
Russian Federation, Moscow, 119991

P. V. Pribytkov

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences; M. V. Lomonosov Moscow State University, Department of Chemistry

Email: kyst@list.ru

M. V. Lomonosov Moscow State University, Department of Chemistry

Russian Federation, Moscow, 119991; Moscow, 119991

S. F. Dunaev

M. V. Lomonosov Moscow State University, Department of Chemistry

Email: kyst@list.ru

Department of Chemistry

Russian Federation, Moscow, 119991

I. P. Beletskaya

M. V. Lomonosov Moscow State University

Email: kyst@list.ru

Department of Chemistry

Russian Federation, Moscow, 119991

A. L. Kustov

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences; M. V. Lomonosov Moscow State University, Department of Chemistry

Author for correspondence.
Email: kyst@list.ru

M. V. Lomonosov Moscow State University, Department of Chemistry

Russian Federation, Moscow, 119991; Moscow, 119991

References

  1. Bogdan V.I., Koklin A.E., Kustov A.L. et al. // Molecules. 2021. V. 26. P. 2883.
  2. Xin Q., Maximov A.L., Liu B.Y. et al. // Russ. J. Appl. Chem. 2022. V. 95. P. 296.
  3. Evdokimenko N.D., Kapustin G.I., Tkachenko O.P. et al. // Molecules. 2022. V. 27. P. 1065.
  4. Matieva Z.M., Kolesnichenko N.V., Snatenkova Yu.M. et al. // J. Taiwan Inst. Chem. Eng. 2023. V. 147. P. 104929.
  5. Vikanova K.V., Kustov A.L., Makhov E.A. et al. // Fuel. 2023. V. 351. P. 128956.
  6. Saito M., Fujitani T., Takeuchi M. et al. // Appl. Catal. A. 1996. V. 138. P. 311.
  7. Kurtz M., Wilmer H., Genger T. et al. // Catal. Lett. 2003. V. 86. P. 77.
  8. Ma J., Sun N., Zhang X. et al. // Catal. Today. 2009. V. 148. P. 221.
  9. Wang W., Wang S., Ma X. et al. // Chem. Soc. Rev. 2011. V. 40. P. 3703.
  10. Smirnova E.M., Evdokimenko N.D., Reshetina M.V. et al. // Russ. J. Phys. Chem. A. 2023. V. 97. P. 1395.
  11. Jiang Yi., Yang H., Gao P. et al. // J. CО2 Util. 2018. V. 26. P. 642.
  12. Dasireddy V.D.B.C., Likozar B. // Renew. Energ. 2019. V. 140. P. 452.
  13. Meunier N., Chauvy R., Mouhoubi S. et al. // Renew. Energ. 2020. V. 146. P. 1192.
  14. Fang X., Xi Y., Jia H. et al. // J. Ind. Eng. Chem. 2020. V. 88. P. 268.
  15. Atsbha T.A., Yoon T., Seongho P. et al. // J. CO2 Util. 2021. V. 44. P. 101413.
  16. Dement’ev K.I., Dementeva O.S., Ivantsov M.I. et al. // Pet. Chem. 2022. V. 62. P. 445.
  17. Schwiderowski P., Ruland H., Muhler M. // Curr. Opin. Green Sustain. Chem. 2022. V. 38. P. 100688.
  18. Niu J., Liu H., Jin Ya. // Int. J. Hydrog. Energy 2022. V. 47. P. 9183.
  19. Ren M., Zhang Ya., Wang Xu. et al. // Catalysts. 2022. V. 12. P. 403.
  20. Kuznetsov N.Yu., Maximov A.L., Beletskaya I.P. // Russ. J. Org. Chem. 2023. V. 58. P. 1681.
  21. Kropp T., Paier J., Sauer J. // J. Catal. 2017. V. 352. P. 382.
  22. Gribovskii A., Ovchinnikova E., Vernikovskaya N. et al. // Chem. Eng. J. 2017. V. 308. P. 135.
  23. Losch P., Pinar A.B., Willinger M.G. et al. // J. Catal. 2017. V. 345. P. 11.
  24. Wang X., Li R., Bakhtiar S. ul H. et al. // Catal. Commun. 2018. V. 108. P. 64.
  25. Niu X., Gao J., Wang K. et al. // Fuel Process. Technol. 2017. V. 157. P. 99.
  26. Yang L., Liu Z., Liu Z. et al. // Chin. J. Catal. 2017. V. 38 (4). P. 683.
  27. Jiménez-López A., Jiménez-Morales I., Santamaría-González J. et al. // J. Mol. Catal. A. 2011. V. 335. P. 205.
  28. Pirola C., Manenti F., Galli F. et al. // Chem. Eng. Trans. 2014. V. 37. P. 553.
  29. Sun Q., Zhang Yu-L., Chen H.-Y. // J. Catal. 1997. V. 167. P. 92.
  30. Mierczynski P., Maniecki T.P., Chalupka K. et al. // Catal. Today. 2011. V. 176. P. 21.
  31. Ren H., Xu C.-H., Zhao H.-Ya. et al. // J. Ind. Eng. Chem. 2015. V. 28. P. 261.
  32. Bukhtiyarova M., Lunkenbein T., Kähler K. et al. // Catal. Lett. 2017. V. 147. P. 416.
  33. Zhang C., Yang H., Gao P. et al. // J. CО2 Util. 2017. V. 17. P. 263.
  34. Previtali D., Longhi M., Galli F. et al. // Fuel. 2020. V. 274. P. 117804.
  35. Vertepov A.E., Fedorova A.A., Batkin A.M. et al. // Catalysts. 2023. V. 13. P. 1231.
  36. Sloczynski J., Grabowski R., Kozlowska A. et al. // Appl. Catal. A. 2004. V. 278. P. 11.
  37. Bogdan V.I., Kustov L.M. // Mendeleev Commun. 2015. V. 25. P. 446.
  38. Evdokimenko N.D., Kim K.O., Kapustin G.I. et al. // Catal. Ind. 2018. V. 10. P. 288.
  39. Evdokimenko N.D., Kustov A.L., Kim K.O. et al. // Mendeleev Commun. 2018. V. 28. P. 147.
  40. Kim K.O., Evdokimenko N.D., Pribytkov P.V. et al. // Russ. J. Phys. Chem. A. 2021. V. 95. P. 2422.
  41. Kim K.O., Shesterkina A.A., Tedeeva M.A. et al. // Russ. J. Phys. Chem. A. 2023. V. 97. P. 582.
  42. Igonina M., Tedeeva M., Kalmykov K. et al. // Catalysts. 2023. V. 13. P. 906.
  43. Tedeeva M.A., Kustov A.L., Pribytkov P.V. et al. // Fuel. 2022. V. 313. P. 122698.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Nitrogen adsorption–desorption isotherms of CuZn/carrier catalysts.

Download (357KB)
3. Fig. 2. Diffraction patterns of the samples of the Al2O3 support and CuZn/Al2O3 catalyst (a), the SiO2 support and CuZn/SiO2 catalyst (b), the TiO2 support and CuZn/TiO2 catalyst (c), the ZrO2(La) support and CuZn/ZrO2(La) catalyst (d), the C support and CuZn/C catalyst (e), the ZnO support and CuZn/ZnO catalyst (e), as well as data from the JCPDS database for crystalline CuO (JCPDS89–5895) and ZnO (JCPDS33783).

Download (374KB)
4. Fig. 3. Micrographs of the catalyst samples

Download (929KB)
5. Fig. 4. Maps of copper and zinc distribution

Download (964KB)
6. Fig. 5. X-ray microanalysis data of the catalyst surfaces of CuZn/Al2O3 (a), CuZn/SiO2 (b), CuZn/TiO2 (c), CuZn/ZrO2(La) (d), CuZn/C (d) and CuZn/ZnO (e).

Download (739KB)
7. Fig. 6. Dependences of CO2 conversion (a) and CH3OH selectivity (b) on the reaction temperature at P = 50 atm. for CuZn/carrier samples.

Download (458KB)
8. Fig. 7. Dependence of selectivity for CH3OH on temperature for CuZn/SiO2 catalyst in the temperature range of 170–270°C at two different pressures of 40 and 50 atm.

Download (175KB)
9. Fig. 8. Dependences of selectivity for CH4 (a) and CO (b) on reaction temperature at P = 50 atm. for CuZn/carrier samples.

Download (455KB)
10. Fig. 9. Dependences of CH3OH productivity on reaction temperature at P = 50 atm. for CuZn/carrier samples.

Download (256KB)

Copyright (c) 2025 Russian Academy of Sciences