Thermodynamic properties of ytterbium titanate

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The isobaric heat capacity of a single-phase sample of ytterbium titanate of pyrochlore structural type synthesized and characterized by XRD, SEM, and EDX methods in the temperature range 2–1869 K is measured for the first time. The existence of magnetic transformation at < 20 K and the absence of structural transformations in the entire region of existence of Yb2Ti2O7 are confirmed. Thermodynamic functions, viz. the entropy and the enthalpy increment and the Gibbs free energy of formation of Yb2Ti2O7 from elements and binary oxides at 298.15 K are calculated. The contribution to the heat capacity of the Schottky anomaly is estimated.

Full Text

Restricted Access

About the authors

A. V. Guskov

N. S. Kurnakov Institute General and Inorganic Chemistry, Russian Academy of Sciences

Email: guskov@igic.ras.ru
Russian Federation, Moscow, 119991

P. G. Gagarin

N. S. Kurnakov Institute General and Inorganic Chemistry, Russian Academy of Sciences

Email: guskov@igic.ras.ru
Russian Federation, Moscow, 119991

V. N. Guskov

N. S. Kurnakov Institute General and Inorganic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: guskov@igic.ras.ru
Russian Federation, Moscow, 119991

K. S. Gavrichev

N. S. Kurnakov Institute General and Inorganic Chemistry, Russian Academy of Sciences

Email: guskov@igic.ras.ru
Russian Federation, Moscow, 119991

References

  1. Greedan J.E. // J. Alloys Compd. 2006. V. 408–412. P. 444. https://doi.org/10.1016/j.jallcom.2004.12.084
  2. Ross K.A., Savary L., Gaulin B.D. et al. // Phys. Rev. X. 2011. V. 1. 021002 http://doi.org/10.1103/PhysRevX.1.021002
  3. Tokiwa Y., Yamashita T., Udagawa M. et al. // Nat. Commun. 2016. V. 7. 10807. https://doi.org/10.1038/ncomms10807
  4. Ramirez A., Hayashi A., Cava R. et al. // Nature. 1999. V. 399. P. 333. https://doi.org/10.1038/20619
  5. Bramwell S.T., Harris M.J., den Hertog B.C. et al. // Phys. Rev. Lett. 2001. V. 87. 047205. https://doi.org/10.1103/PhysRevLett.87.047205
  6. Scheie A., Kindervater J., Säubert S. et al. // Phys. Rev. Lett. 2017. V. 119. 127201. https://doi.org/10.1103/PhysRevLett.119.127201
  7. Yaouanc A., de Réotier P.D., Marin C. et al. // Phys. Rev. B. V. 84. 172408. https://doi.org/10.1103/PhysRevB.84.172408
  8. Blöte H.W.J., Wielinga R.F., Huiskamp W.J. // Physica. 1969. V. 43. P. 549. https://doi.org/10.1016/0031-8914(69)90187-6
  9. D’Ortenzio R.M., Dabkowska H.A., Dunsiger S.R. et al. // Phys. Rev. B. 2013. V. 88. 134428. https://doi.org/10.1103/PhysRevB.88.134428
  10. Hamachi N., Yasui Y., Araki K. et al. // AIP Advances. 2016. V. 6. 055707. https://doi.org/10.1063/1.4944337
  11. Bonville P., Hodges J.A., Bertin E. et al. // ICAME. 2003. Springer. Dordrecht. https://doi.org/10.1007/978-1-4020-2852-6_17
  12. Aughterson R.D., Lumpkin G.R., Bedfort A. et al. // Ceram. Int. 2023. V. 49. P. 11149. https://doi.org/10.1016/j.ceramint.2022.11.311
  13. Guo H., Zhang K., Li Y. // Ceram. Int. 2024. V. 50. P. 21859. https://doi.org/10.1016/j.ceramint.2024.03.298
  14. Teng Z., Tan Y., Zeng S. et al. // J. Europ. Ceram. Soc. 2021. V. 41. P. 3614. https://doi.org/10.1016/j.jeurceramsoc.2021.01.01
  15. Chung C.-K., O’Quinn, Neuefeind J.C. et al. // Acta Mater. 2019. V. 181. P. 309. https://doi.org/ j.actamat.2019.09.022
  16. Lian J., Chen J., Wang L.M. et al. // Phys. Rev. B. 2003. V. 68. 134107. https://doi.org/PhysRevB.68.134107
  17. Helean K.B., Ushakov S.V., Brown C.E. et al. // J. Sol. State Chem, 2004. V. 177. P. 1858. https://doi.org/ j.jssc.2004.01.009
  18. Резницкий Л.А. // Неорган. материалы. 1993. Т. 29. С. 1310 [Reznitsky L.A. // Inorg. mater. 1993. V. 29. P. 1310. On Russian].
  19. Гуськов В.Н., Гавричев К.С., Гагарин П.Г., Гуськов А.В. // ЖНХ. 2019. Т. 64. С. 1072. https://doi.org/10.1134/S0044457X19100040 [Guskov V.N., Gavrichev K.S., Gagarin P.G., Guskov A.V. // Russ. J. Inorgan. Chem. 2019. V. 64. P. 1265. https://doi.org/10.1134/S0036023619100048].
  20. Guskov A.V., Gagarin P.G., Guskov V.N. et al. // Ceram. Int. 2021. V. 47. P. 28004. https://doi.org/10.1016/j.ceramint.2021.06.125
  21. Rosen P.F., Woodfield B.F. // J. Chem. Thermodyn. 2020. V. 141. P. 105974. https://doi.org/10.1016/j.jct.2019.105974
  22. Sabbah R., Xu-wu A., Chickos J.S. et al. // Thermochim. Acta. 1999. V. 331. P. 93. https://doi.org/10.1016/S0040-6031(99)00009-X
  23. Prohaska T., Irrgeher J., Benefield J. et al. // Pure Appl. Chem. 2022. V. 94(5). P. 573. https://doi.org/10.1515/pac-2019-0603
  24. Farmer J.M., Boatner L.A., Chakouakos B.C. et al. // J. Alloys Compd. 2014. V. 605. P. 63. https://doi.org/10.1016/j.jallcom.2014.03.153
  25. Li Q.J., Xu L.M., Fan C. et al. // J. Crystal Growth. V. 377. P. 96. https://doi.org/10.1016/j.jcrysgro.2013.04.048
  26. Voskov A.L., Kutsenok I.B., Voronin G.F. // Calphad. 2018. V. 61. P. 50–61. https://doi.org/10.1016/j.calphad.2018.02.001
  27. Voronin G.F., Kutsenok I.B. // J. Chem. Eng. Data. 2013. V. 58. P. 2083–2094. https://doi.org/10.1021/je400316m
  28. Tari A. The specific heat of matter at low temperatures // Imperial College Press. 2003. 211 p. https://doi.org/10.1142/9781860949395_0006
  29. Li S.J., Che H.L., Wu J.C. et al. // AIP Advances. 2018. V. 8. 055705. https://doi.org/10.1063/1.5005988
  30. Westrum E.F., Jr. // J. Therm. Anal. 1985. V. 30. P. 1209. https://doi.org/10.1007/BF01914288
  31. Bissengalieva M.R., Knyazev A.V., Bespyatov M.A. et al. // J. Chem. Thermodyn. 2022. V. 165. P. 106646. https://doi.org/10.1016/j.jct.2021.103346
  32. Gruber J., Westrum E.F. // J. Chem. Phys. 1982. V. 76. P. 4600–4605. https://doi.org/10.1007/978-1-4613-3406-4_55
  33. Saha S., Singh S., Dkhil B. et al. // Physical Review B. 2008. V. 78. P. 214102–1–214102–10. https://doi.org/10.1103/PhysRevB.78.214102
  34. Konings R.J.M., Beneš O., Kovács A. et al. // J. Phys. Chem. Refer. Data. 2014. V. 4. P. 013101. https://doi.org/10.1063/1.4825256
  35. Chase M.W., Jr. // J. Phys. Chem. Refer. Data Monograph No. 9 NIST-JANAF. Washington DC, 1998.
  36. Глушко В.П. Термические константы веществ. Справочник. Москва, 1965–1982. https://www.chem.msu.su/cgibin/tkv.pl?show=welcome.html&_ga=2.137226480.1380683462.1715071323-1284717817.1617178349 [Glushko V.P. Thermal constants of substances. Reference book. Moscow 1965–1982. https://www.chem.msu.su/cgibin/tkv.pl?show=welcome.html&_ga=2.137226480.1380683462.1715071323-1284717817.1617178349].

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. DSC/TG of ytterbium titanate precursor.

Download (144KB)
3. Fig. 2. Surface morphology of ytterbium titanate.

Download (684KB)
4. Fig. 3. Diffraction pattern of a sample of ytterbium titanate, structural type Fm3m, a = 10.032(2) Å, CuKα-radiation, λ = 1.5418 Å.

Download (104KB)
5. Fig. 4. Experimental heat capacity of Yb2Ti2O7 (pyrochlore), P = 101.3 kPa. The insets show the areas where the results of relaxation and adiabatic (2–45 K), adiabatic and differential scanning (310–350 K) calorimetry measurements are joined.

Download (224KB)
6. Fig. 5. Comparison of excess heat capacity: 1 – difference between the heat capacities of Yb2Ti2O7 and Lu2Ti2O7 [31]; 2 – calculation using equation 2 (the heat capacity of gadolinium oxide is corrected to take into account the magnetic contribution and the contribution of the Schottky anomaly); 3 – calculation of the Schottky anomaly from spectral data on Stark levels (0, 388, 595, 1021 cm–1) [32].

Download (121KB)
7. Fig. 6. Molar heat capacity of Yb2Ti2O7: 1 – measured by DSC and 2 – calculated by Neumann–Kopp from the heat capacities of simple oxides.

Download (117KB)

Copyright (c) 2025 Russian Academy of Sciences