Сравнительный анализ осмотической резистентности эритроцитов различных таксонов позвоночных

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Осмотическая хрупкость или резистентность эритроцитов (osmotic fragility) — параметр, отражающий способность клеток противостоять изменению осмотического градиента. Нарушения этой характеристики связаны с различными патологиями, включая гемолитические анемии, злокачественные новообразования, сердечно-сосудистые заболевания. Осмотическая резистентность может варьироваться у различных видов животных и тесно связана с экосистемой. Разработан метод определения осмотической резистентности с применением лазерного анализатора дисперсных частиц, который позволяет регистрировать изменения концентрации клеток в кинетическом режиме при постоянной температуре. Исследуемые с его помощью виды включают Homo sapiens, Rattus norvegicus domestica, Coturnix japonica domestica, Rana ridibunda, Carassius carassius и Lampetra fluviatilis. Метод предложен в двух вариантах: (1) добавки воды осуществляются вручную (мануальный), (2) среда разбавляется автоматически (автоматический). В качестве характеристики осмотической резистентности использованы параметры: H50 (осмоляльность, при которой лизирует половина подверженных лизису клеток), H90 (90-процентный лизис) и W (гетерогенность популяции по степени устойчивости к лизису). Результаты, полученные с использованием разработанного метода, статистически значимо не отличаются от результатов спектрофотометрии и проточной цитометрии по параметрам H50 и W. Между результатами автоматического и мануального методов значимых различий так же не обнаружено. Эритроциты водных и околоводных животных существенно более устойчивы к гипоосмотическому лизису. Среди всех исследованных видов наиболее устойчивы к лизису оказались эритроциты амфибий (Rana ridibunda) и миног (Lampetra fluviatilis). Наибольшая гетерогенность по степени устойчивости обнаружена у амфибий (разница в 2 раза в сравнении со всеми прочими рассмотренными таксонами). Эритроциты млекопитающих (человека и крысы) схожи по уровню резистентности, менее однородны по степени устойчивости. Половинный лизис эритроцитов птиц наблюдается при большей осмоляльности, чем у эритроцитов млекопитающих. Эритроциты птиц (Coturnix japonica domestica), однако, лизируют в значительно большем осмотическом диапазоне и содержат популяцию невосприимчивых к гипоосмотическому лизису клеток. Полученные данные показали, что эритроциты пресноводных низших позвоночных более осмотически устойчивы, чем эритроциты высших, что, вероятно, объясняется особенностями эмбриогенеза, экто-/эндотермностью и средой обитания.

Полный текст

Доступ закрыт

Об авторах

Б. А. Герда

Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН

Автор, ответственный за переписку.
Email: bgergda2525@gmail.com
Россия, Санкт-Петербург

Е. А. Скверчинская

Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН

Email: bgergda2525@gmail.com
Россия, Санкт-Петербург

А. Ю. Андреева

Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН; Институт биологии южных морей имени А.О. Ковалевского РАН

Email: bgergda2525@gmail.com
Россия, Санкт-Петербург; Севастополь

А. А. Волкова

Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН

Email: bgergda2525@gmail.com
Россия, Санкт-Петербург

С. П. Гамбарян

Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН

Email: bgergda2525@gmail.com
Россия, Санкт-Петербург

И. В. Миндукшев

Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН

Email: bgergda2525@gmail.com
Россия, Санкт-Петербург

Список литературы

  1. Huisjes R, Bogdanova A, van Solinge WW, Schiffelers RM, Kaestner L, van Wijk R (2018) Squeezing for Life — Properties of Red Blood Cell Deformability. Front Physiol 9:656. https://doi.org/10.3389/fphys.2018.00656
  2. Skverchinskaya E, Levdarovich N, Ivanov A, Mindukshev I, Bukatin A (2023) Anticancer Drugs Paclitaxel, Carboplatin, Doxorubicin, and Cyclophosphamide Alter the Biophysical Characteristics of Red Blood Cells, in vitro. Biology (Basel) 12:230. https://doi.org/10.3390/biology12020230
  3. Orbach A, Zelig O, Yedgar S, Barshtein G (2017) Biophysical and Biochemical Markers of Red Blood Cell Fragility. Transfus Med Hemother 44:183–187. https://doi.org/10.1159/000452106
  4. Baskurt OK, Meiselman HJ (2003) Blood rheology and hemodynamics. Semin Thromb Hemost 29:435–450. https://doi.org/10.1055/s-2003-44551
  5. Ok B (2008) In vivo correlates of altered blood rheology. Biorheology 45:
  6. Lux SE (2016) Anatomy of the red cell membrane skeleton: unanswered questions. Blood 127:187–199. https://doi.org/10.1182/blood-2014-12-512772
  7. Mohandas N, Gallagher PG (2008) Red cell membrane: past, present, and future. Blood 112:3939–3948. https://doi.org/10.1182/blood-2008-07-161166
  8. Klei TRL, Meinderts SM, van den Berg TK, van Bruggen R (2017) From the Cradle to the Grave: The Role of Macrophages in Erythropoiesis and Erythrophagocytosis. Front Immunol 8:. https://doi.org/10.3389/fimmu.2017.00073
  9. Perrotta S, Gallagher PG, Mohandas N (2008) Hereditary spherocytosis. Lancet 372:1411–1426. https://doi.org/10.1016/S0140-6736(08)61588-3
  10. Vayá A, Suescun M, Pardo A, Fuster O (2014) Erythrocyte deformability and hereditary elliptocytosis. Clin Hemorheol Microcirc 58:471–473. https://doi.org/10.3233/CH-141889
  11. Glogowska E, Lezon-Geyda K, Maksimova Y, Schulz VP, Gallagher PG (2015) Mutations in the Gardos channel (KCNN4) are associated with hereditary xerocytosis. Blood 126:1281–1284. https://doi.org/10.1182/blood-2015-07-657957
  12. Bunyaratvej A, Butthep P, Sae-Ung N, Fucharoen S, Yuthavong Y (1992) Reduced Deformability of Thalassemic Erythrocytes and Erythrocytes With Abnormal Hemoglobins and Relation With Susceptibility to Plasmodium falciparum Invasion. Blood 79:2460–2463. https://doi.org/10.1182/blood.V79.9.2460.2460
  13. Vayá A, Collado S, Dasí MA, Pérez ML, Hernandez JL, Barragán E (2014) Erythrocyte deformability and aggregation in homozygous sickle cell disease. Clin Hemorheol Microcirc 58:497–505. https://doi.org/10.3233/CH-131717
  14. Mercke CE (1981) Anaemia in patients with solid tumours and the role of erythrocyte deformability. Br J Cancer 44:425–432
  15. Piagnerelli M, Boudjeltia KZ, Vanhaeverbeek M, Vincent J-L (2003) Red blood cell rheology in sepsis. Intensive Care Med 29:1052–1061. https://doi.org/10.1007/s00134-003-1783-2
  16. Nemeth N, Peto K, Magyar Z, Klarik Z, Varga G, Oltean M, Mantas A, Czigany Z, Tolba RH (2021) Hemorheological and Microcirculatory Factors in Liver Ischemia-Reperfusion Injury—An Update on Pathophysiology, Molecular Mechanisms and Protective Strategies. International Journal of Molecular Sciences 22:1864. https://doi.org/10.3390/ijms22041864
  17. Varga A, Matrai AA, Barath B, Deak A, Horvath L, Nemeth N (2022) Interspecies Diversity of Osmotic Gradient Deformability of Red Blood Cells in Human and Seven Vertebrate Animal Species. Cells 11:1351. https://doi.org/10.3390/cells11081351
  18. Waymouth C (1970) Osmolality of mammalian blood and of media for culture of mammalian cells. In Vitro 6:109–127. https://doi.org/10.1007/BF02616113
  19. Matrai AA, Varga G, Tanczos B, Barath B, Varga A, Horvath L, Bereczky Z, Deak A, Nemeth N (2021) In vitro effects of temperature on red blood cell deformability and membrane stability in human and various vertebrate species. Clin Hemorheol Microcirc 78:291–300. https://doi.org/10.3233/CH-211118
  20. Aldrich K, Saunders D, Sievert L, Sievert G (2006) Comparison of erythrocyte osmotic fragility among amphibians, reptiles, birds and mammals. Transactions of the Kansas Academy of Science 109:149–158. https://doi.org/10.1660/0022-8443(2006)109[149:COEOFA]2.0.CO;2
  21. Aldrich K, Saunders DK (2001) Comparison of erythrocyte osmotic fragility among ectotherms and endotherms at three temperatures. Journal of Thermal Biology 26:179–182. https://doi.org/10.1016/S0306-4565(00)00040-1
  22. Singh S, Ponnappan N, Verma A, Mittal A (2019) Osmotic tolerance of avian erythrocytes to complete hemolysis in solute free water. Sci Rep 9:7976. https://doi.org/10.1038/s41598-019-44487-7
  23. Dobbe JGG, Hardeman MR (2006) Red blood cell aggregation as measured with the LORCA. Int J Artif Organs 29:641–642; author reply 643
  24. Shin S, Hou JX, Suh JS, Singh M (2007) Validation and application of a microfluidic ektacytometer (RheoScan-D) in measuring erythrocyte deformability. Clin Hemorheol Microcirc 37:319–328
  25. Dobbe JGG, Streekstra GJ, Hardeman MR, Ince C, Grimbergen CA (2002) Measurement of the distribution of red blood cell deformability using an automated rheoscope. Cytometry 50:313–325. https://doi.org/10.1002/cyto.10171
  26. Föller M, Geiger C, Mahmud H, Nicolay J, Lang F (2008) Stimulation of suicidal erythrocyte death by amantadine. Eur J Pharmacol 581:13–18. https://doi.org/10.1016/j.ejphar.2007.11.051
  27. Hunt L, Greenwood D, Heimpel H, Noel N, Whiteway A, King M-J (2015) Toward the harmonization of result presentation for the eosin-5’-maleimide binding test in the diagnosis of hereditary spherocytosis. Cytometry B Clin Cytom 88:50–57. https://doi.org/10.1002/cyto.b.21187
  28. Yeow N, Tabor RF, Garnier G (2017) Atomic force microscopy: From red blood cells to immunohaematology. Adv Colloid Interface Sci 249:149–162. https://doi.org/10.1016/j.cis.2017.05.011
  29. Waugh RE, Narla M, Jackson CW, Mueller TJ, Suzuki T, Dale GL (1992) Rheologic properties of senescent erythrocytes: loss of surface area and volume with red blood cell age. Blood 79:1351–1358
  30. Lubiana P, Bouws P, Roth LK, Dörpinghaus M, Rehn T, Brehmer J, Wichers JS, Bachmann A, Höhn K, Roeder T, Thye T, Gutsmann T, Burmester T, Bruchhaus I, Metwally NG (2020) Adhesion between P. falciparum infected erythrocytes and human endothelial receptors follows alternative binding dynamics under flow and febrile conditions. Sci Rep 10:4548. https://doi.org/10.1038/s41598-020-61388-2
  31. Cluitmans JCA, Chokkalingam V, Janssen AM, Brock R, Huck WTS, Bosman GJCGM (2014) Alterations in red blood cell deformability during storage: a microfluidic approach. Biomed Res Int 2014:764268. https://doi.org/10.1155/2014/764268
  32. Oonishi T, Sakashita K, Uyesaka N (1997) Regulation of red blood cell filterability by Ca2+ influx and cAMP-mediated signaling pathways. Am J Physiol 273:C1828-1834. https://doi.org/10.1152/ajpcell.1997.273.6.C1828
  33. Parpart AK, Lorenz PB, Parpart ER, Gregg JR, Chase AM (1947) THE OSMOTIC RESISTANCE (FRAGILITY) OF HUMAN RED CELLS 1. J Clin Invest 26:636–640
  34. Won DI, Suh JS (2009) Flow cytometric detection of erythrocyte osmotic fragility. Cytometry B Clin Cytom 76:135–141. https://doi.org/10.1002/cyto.b.20448
  35. Zhan Y, Loufakis DN, Bao N, Lu C (2012) Characterizing osmotic lysis kinetics under microfluidic hydrodynamic focusing for erythrocyte fragility studies. Lab Chip 12:5063–5068. https://doi.org/10.1039/c2lc40522a
  36. Mindukshev IV, Krivoshlyk VV, Ermolaeva EE, Dobrylko IA, Senchenkov EV, Goncharov NV, Jenkins RO, Krivchenko AI (2007) Necrotic and apoptotic volume changes of red blood cells investigated by low-angle light scattering technique. Journal of Spectroscopy 21:105–120. https://doi.org/10.1155/2007/629870
  37. Sudnitsyna J, Skverchinskaya E, Dobrylko I, Nikitina E, Gambaryan S, Mindukshev I (2020) Microvesicle Formation Induced by Oxidative Stress in Human Erythrocytes. Antioxidants (Basel) 9:929. https://doi.org/10.3390/antiox9100929
  38. Deckardt K, Weber I, Kaspers U, Hellwig J, Tennekes H, van Ravenzwaay B (2007) The effects of inhalation anaesthetics on common clinical pathology parameters in laboratory rats. Food Chem Toxicol 45:1709–1718. https://doi.org/10.1016/j.fct.2007.03.005
  39. Bonnet X, Billy G, Lakušić M (2020) Puncture versus capture: which stresses animals the most? J Comp Physiol B 190:341–347. https://doi.org/10.1007/s00360-020-01269-2
  40. Goodhead LK, MacMillan FM (2017) Measuring osmosis and hemolysis of red blood cells. Adv Physiol Educ 41:298–305. https://doi.org/10.1152/advan.00083.2016
  41. Fujii H, Nishikawa K, Na H, Inoue Y, Kobayashi K, Watanabe M (2023) Numerical study of light scattering and propagation in soymilk: Effects of particle size distributions, concentrations, and medium sizes. Infrared Physics & Technology 132:104753. https://doi.org/10.1016/j.infrared.2023.104753
  42. Crump KS, Hoel DG, Langley CH, Peto R (1976) Fundamental carcinogenic processes and their implications for low dose risk assessment. Cancer Res 36:2973–2979
  43. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E, Carey CJ, Polat İ, Feng Y, Moore EW, VanderPlas J, Laxalde D, Perktold J, Cimrman R, Henriksen I, Quintero EA, Harris CR, Archibald AM, Ribeiro AH, Pedregosa F, van Mulbregt P, SciPy 1.0 Contributors (2020) SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods 17:261–272. https://doi.org/10.1038/s41592-019-0686-2
  44. Mindukshev IV, Skverchinskaya EA, Khmelevskoy DA, Dobrylko IA, Goncharov NV (2019) Acetylcholinesterase Inhibitor Paraoxon Intensifies Oxidative Stress Induced in Rat Erythrocytes In Vitro. Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology 1:85–91. https://doi.org/10.1134/S1990747819010070
  45. Nemeth N, Sogor V, Kiss F, Ulker P (2016) Interspecies diversity of erythrocyte mechanical stability at various combinations in magnitude and duration of shear stress, and osmolality. Clin Hemorheol Microcirc 63:381–398. https://doi.org/10.3233/CH-152031
  46. Ferreira-Martins D, Wilson JM, Kelly SP, Kolosov D, McCormick SD (2021) A review of osmoregulation in lamprey. Journal of Great Lakes Research 47:S59–S71. https://doi.org/10.1016/j.jglr.2021.05.003
  47. Hägerstrand H, Danieluk M, Bobrowska-Hägerstrand M, Iglič A, Wróbel A, Isomaa B, Nikinmaa M (2000) Influence of band 3 protein absence and skeletal structures on amphiphile- and Ca2+-induced shape alterations in erythrocytes: a study with lamprey (Lampetra fluviatilis), trout (Onchorhynchus mykiss) and human erythrocytes. Biochimica et Biophysica Acta (BBA) — Biomembranes 1466:125–138. https://doi.org/10.1016/S0005-2736(00)00184-X
  48. Tang F, Lei X, Xiong Y, Wang R, Mao J, Wang X (2014) Alteration Young’s moduli by protein 4.1 phosphorylation play a potential role in the deformability development of vertebrate erythrocytes. J Biomech 47:3400–3407. https://doi.org/10.1016/j.jbiomech.2014.07.022
  49. Baines AJ, Lu H-C, Bennett PM (2014) The Protein 4.1 family: Hub proteins in animals for organizing membrane proteins. Biochimica et Biophysica Acta (BBA) — Biomembranes 1838:605–619. https://doi.org/10.1016/j.bbamem.2013.05.030
  50. Jeremy KP, Plummer ZE, Head DJ, Madgett TE, Sanders KL, Wallington A, Storry JR, Gilsanz F, Delaunay J, Avent ND (2009) 4.1R-deficient human red blood cells have altered phosphatidylserine exposure pathways and are deficient in CD44 and CD47 glycoproteins. Haematologica 94:1354–1361. https://doi.org/10.3324/haematol.2009.006585
  51. Evans TG (2010) Co-ordination of osmotic stress responses through osmosensing and signal transduction events in fishes. J Fish Biol 76:1903–1925. https://doi.org/10.1111/j.1095-8649.2010.02590.x
  52. Al-Jandal NJ, Wilson RW (2011) A comparison of osmoregulatory responses in plasma and tissues of rainbow trout (Oncorhynchus mykiss) following acute salinity challenges. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 159:175–181. https://doi.org/10.1016/j.cbpa.2011.02.016
  53. Ezell GH, Sulya LL, Dodgen CL (1969) The osmotic fragility of some fish erythrocytes in hypotonic saline. Comparative Biochemistry and Physiology 28:409–415. https://doi.org/10.1016/0010-406X(69)91354-1
  54. Demanche R (1980) The Osmotic Fragility Of Red Blood Cells Of Marine Animals: A Comparative Study. https://doi.org/10.21220/S2-1JMC-WK51
  55. Kim HD, Isaacks RE (1978) The osmotic fragility and critical hemolytic volume of red blood cells of Amazon fishes. Can J Zool 56:860–862. https://doi.org/10.1139/z78-118
  56. Lewis JH, Ferguson EE (1966) Osmotic fragility of premammalian erythrocytes. Comparative Biochemistry and Physiology 18:589–595. https://doi.org/10.1016/0010-406X(66)90242-8
  57. Hyodo S, Kakumura K, Takagi W, Hasegawa K, Yamaguchi Y (2014) Morphological and functional characteristics of the kidney of cartilaginous fishes: with special reference to urea reabsorption. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 307:R1381–R1395. https://doi.org/10.1152/ajpregu.00033.2014
  58. Hyodo S, Tsukada T, Takei Y (2004) Neurohypophysial hormones of dogfish, Triakis scyllium: structures and salinity-dependent secretion. Gen Comp Endocrinol 138:97–104. https://doi.org/10.1016/j.ygcen.2004.05.009
  59. Coldman MF, Gent M, Good W (1970) Relationships between osmotic fragility and other species-specific variables of mammalian erythrocytes. Comparative Biochemistry and Physiology 34:759–772. https://doi.org/10.1016/0010-406X(70)90997-7
  60. Baskurt OK (1996) Deformability of red blood cells from different species studied by resistive pulse shape analysis technique. Biorheology 33:169–179. https://doi.org/10.1016/0006-355X(96)00014-5
  61. Gül Ç, Tosunoğlu M, Erdoğan D (2011) Changes in the blood composition of some anurans. Acta Herpetologica 6:137–147. https://doi.org/10.13128/Acta_Herpetol-9137
  62. Potter IC, Percy LR, Barber DL, Macey DJ (1982) The morphology, development and physiology of blood cells. In: Hardisty MW, Potter IC (eds) The Biology of Lampreys. Academic Press, London, p V4A: 233-292
  63. Suljević D, Alijagic A, Mitrašinović-Brulić M, Focak M, Islamagic E (2017) Comparative physiological assessment of common carp (cyprinus carpio) and crucian carp (carassius carassius) based on electrolyte and hematological analysis. Macedon. J. Animal Sci. 6:95–100. https://doi.org/10.54865/mjas1662095s
  64. Chen D, Kaul DK (1994) Rheologic and hemodynamic characteristics of red cells of mouse, rat and human. Biorheology 31:103–113. https://doi.org/10.3233/bir-1994-31109
  65. Sujata P, Mohanty PK, Mallik BK (2014) Haematological analyses of Japanese quail (Coturnix coturnix japonica) at different stages of growth. Res. J. Chem. Sci. ISSN 2231:606X
  66. da SilveiraCavalcante L, Acker JP, Holovati JL (2015) Differences in Rat and Human Erythrocytes Following Blood Component Manufacturing: The Effect of Additive Solutions. Transfus Med Hemother 42:150–157. https://doi.org/10.1159/000371474
  67. Morris MJ, David-Dufilho M, Devynck MA (1988) Red blood cell ionized calcium concentration in spontaneous hypertension: modulation in vivo by the calcium antagonist PN 200.110. Clin Exp Pharmacol Physiol 15:257–260. https://doi.org/10.1111/j.1440-1681.1988.tb01068.x
  68. Swislocki NI, Tierney JM (1989) Different sensitivities of rat and human red cells to exogenous Ca2+. Am J Hematol 31:1–10. https://doi.org/10.1002/ajh.2830310102
  69. Glomski CA, Tamburlin J, Hard R, Chainani M (1997) The phylogenetic odyssey of the erythrocyte. IV. The amphibians. Histol Histopathol 12:147–170
  70. Kim G, Lee M, Youn S, Lee E, Kwon D, Shin J, Lee S, Lee YS, Park Y (2018) Measurements of three-dimensional refractive index tomography and membrane deformability of live erythrocytes from Pelophylax nigromaculatus. Sci Rep 8:9192. https://doi.org/10.1038/s41598-018-25886-8
  71. Chen X, Wu Y, Huang L, Cao X, Hanif M, Peng F, Wu X, Zhang S (2022) Morphology and cytochemical patterns of peripheral blood cells of tiger frog (Rana rugulosa). PeerJ 10:e13915. https://doi.org/10.7717/peerj.13915
  72. Villolobos M, León P, Sessions SK, Kezer J (1988) Enucleated Erythrocytes in Plethodontid Salamanders. Herpetologica 44:243–250
  73. Oyewale JO (1992) Effects of temperature and pH on osmotic fragility of erythrocytes of the domestic fowl (Gallus domesticus) and guinea-fowl (Numida meleagris). Res Vet Sci 52:1–4. https://doi.org/10.1016/0034-5288(92)90049-8
  74. Parshina EY, Yusipovich AI, Brazhe AR, Silicheva MA, Maksimov GV (2019) Heat damage of cytoskeleton in erythrocytes increases membrane roughness and cell rigidity. J Biol Phys 45:367–377. https://doi.org/10.1007/s10867-019-09533-5
  75. Aloni B, Eitan A, Livne A (1977) The erythrocyte membrane site for the effect of temperature on osmotic fragility. Biochim Biophys Acta 465:46–53. https://doi.org/10.1016/0005-2736(77)90354-6
  76. Oyewale JO (1991) Osmotic fragility of erythrocytes of west African dwarf sheep and goats: effects of temperature and pH. Br Vet J 147:163–170. https://doi.org/10.1016/0007-1935(91)90107-X
  77. Oyewale JO, Sanni AA, Ajibade HA (1991) Effects of temperature, pH and blood storage on osmotic fragility of duck erythrocytes. Zentralbl Veterinarmed A 38:261–264. https://doi.org/10.1111/j.1439-0442.1991.tb01011.x
  78. Skorkina MI, Derkachev RV (2010) [Seasonal activity of frog Rana ridibunda erythrocytes by data of electrophoretic mobility]. Zh Evol Biokhim Fiziol 46:134–137
  79. Jørgensen C (2008) Osmotic Regulation in the Frog, Kana Esculenta (L.), at Low Temperatures. Acta Physiologica Scandinavica 20:46–55. https://doi.org/10.1111/j.1748-1716.1950.tb00680.x
  80. Zeidler RB, Kim HD (1979) Effects of low electrolyte media on salt loss and hemolysis of mammalian red blood cells. J Cell Physiol 100:551–561. https://doi.org/10.1002/jcp.1041000317
  81. Kumiega E, Michałek M, Kasztura M, Noszczyk-Nowak A (2020) Analysis of Red Blood Cell Parameters in Dogs with Various Stages of Degenerative Mitral Valve Disease. J Vet Res 64:325–332. https://doi.org/10.2478/jvetres-2020-0043
  82. Gharaibeh NS, Rawashdeh NM (1993) Volume-Dependent Potassium Transport in Camel Red Blood Cells. Membrane Biochemistry 10:99–106. https://doi.org/10.3109/09687689309150257
  83. Viscor G, Palomeque J (1982) Method for determining the osmotic fragility curves of erythrocytes in birds. Laboratory Animals 16:48–50
  84. Benga G (2009) Water channel proteins (later called aquaporins) and relatives: past, present, and future. IUBMB Life 61:112–133. https://doi.org/10.1002/iub.156
  85. Diez-Silva M, Dao M, Han J, Lim C-T, Suresh S (2010) Shape and Biomechanical Characteristics of Human Red Blood Cells in Health and Disease. MRS Bull 35:382–388. https://doi.org/10.1557/mrs2010.571
  86. Barshtein G, Gural A, Arbell D, Barkan R, Livshits L, Pajic-Lijakovic I, Yedgar S (2023) Red Blood Cell Deformability Is Expressed by a Set of Interrelated Membrane Proteins. Int J Mol Sci 24:12755. https://doi.org/10.3390/ijms241612755
  87. Cassoly R, Stetzkowski-Marden F, Scheuring U (1989) A mixing chamber to enucleate avian and fish erythrocytes: preparation of their plasma membrane. Anal Biochem 182:71–76. https://doi.org/10.1016/0003-2697(89)90720-3
  88. Plasenzotti R, Windberger U, Ulberth F, Osterode W, Losert U (2007) Influence of fatty acid composition in mammalian erythrocytes on cellular aggregation. Clin Hemorheol Microcirc 37:237–243
  89. Вафис АА, Пескова ТЮ (2009) Реакции крови озерной лягушки Rana ridibunda pal. на воздействие сточных вод сахарных заводов. Вопросы современной науки и практики Университет им ВИ Вернадского. [Vafis AA, Peskova TY (2009) Blood reactions of the lake frog Rana ridibunda pal. on the impact of wastewater from sugar factories. Voprosy sovremennoi nauki i praktiki Universitet im VI Vernadskogo (In Russ)]
  90. Vijitkul P, Kongsema M, Toommakorn T, Bullangpoti V (2022) Investigation of genotoxicity, mutagenicity, and cytotoxicity in erythrocytes of Nile tilapia (Oreochromis niloticus) after fluoxetine exposure. Toxicology Reports 9:588–596. https://doi.org/10.1016/j.toxrep.2022.03.031
  91. Giraud-Billoud M, Moreira DC, Minari M, Andreyeva A, Campos ÉG, Carvajalino-Fernández JM, Istomina A, Michaelidis B, Niu C, Niu Y, Ondei L, Prokić M, Rivera-Ingraham GA, Sahoo D, Staikou A, Storey JM, Storey KB, Vega IA, Hermes-Lima M (2024) REVIEW: Evidence supporting the ‘preparation for oxidative stress’ (POS) strategy in animals in their natural environment. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 293:111626. https://doi.org/10.1016/j.cbpa.2024.111626

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Примеры первичных данных, полученных методами спектрофотометрии и проточной цитометрии. (a) — спектрофотометрия. Разными цветами показаны графики зависимости оптической плотности (OD) от длины волны (λ), отмечена использованная длина волны (540 нм). OD возрастает по мере снижения осмоляльности. Точка перед началом лизиса (Rmax) — 150 мОсм. (b) — проточная цитометрия. Снижение осмоляльности ведет к снижению числа регистрируемых событий в области с клетками (RBC) и росту количества микрочастиц (MP). Точка перед началом лизиса (Rmax) — 200 мОсм. Приведенные данные получены на эритроцитах человека. Выделение красным — область с эритроцитами, выделение синим — область с микрочастицами.

Скачать (41KB)
3. Рис. 2. Пример первичных данных, полученных мануальным методом лазерной дифракции, и визуализация ключевых параметров на лизисной кривой. (a) — метод лазерной дифракции (мануальный). Интенсивность светорассеяния возрастает ввиду роста объема клеток при осмоляльностях 200 и 150 мОсм. Затем падает по мере дальнейшего снижения осмоляльности в результате гемолизиса. Точка перед началом лизиса (Rmax ) — 150 мОсм. (b) — лизисная кривая, построенная по описанному алгоритму. Данные получены на эритроцитах птиц для демонстрации неполного лизиса клеток и параметра Lysmax. Отображены ключевые параметры, характеризующие устойчивость эритроцитов (H50, H90, H10, W и, Lysmax).

Скачать (32KB)
4. Рис. 3. Коррекция интенсивности светорассеяния. (a) — теоретические и экспериментальные зависимости интенсивности от концентрации дисперсных частиц для латексов диаметрами 6, 10 и 16 мкм. Теоретические и экспериментальные зависимости совпадают при kd = 6.3, V = 8.33. (b) — интенсивности светорассеяния до и после коррекции. Данные получены на эритроцитах человека. На скорректированной зависимости представлен рост интенсивности ввиду увеличения объема эритроцитов.

Скачать (33KB)
5. Рис. 4. Осмотическая резистентность эритроцитов человека при 25 и 37 C. (a) — сравнение по H90. (b) — сравнение по H50. (c) — сравнение по W. Усы — минимум и максимум, n = 12 для 37 C, n = 6 для 25 C, + — среднее значение, ns — p > 0.05, ** — p < 0.01, ** — p < 0.001, Welch t test. (d) — зависимости процента лизиса (Lys) в экспериментальных точках от осмоляльности среды (Osm). Полупрозрачное облако — стандартное отклонение (sd).

Скачать (59KB)
6. Рис. 5. Сравнение мануального метода лазерной дифракции с проточной цитометрией и спектрофотометрией при оценке осмотической резистентности эритроцитов человека. (a) — сравнение по H90. (b) — сравнение по H50. (c) — сравнение по W. FC — проточная цитометрия (n = 6), SPh — спектрофотометрия (n = 5), LDM — мануальный метод лазерной дифракции (n = 6), усы — минимум и максимум, + — среднее значение, ns — p > 0.05, * — p < 0.05, Tukey’s multiple comparisons test. (d) — QQ-plot для H90. (e) — QQ-plot для H50. (f) — QQ-plot для W. Predicted — квантили стандартного нормального распределения. (g) — зависимости процента лизиса (Lys) в экспериментальных точках от осмоляльности среды (Osm); полупрозрачное облако — стандартное отклонение (sd).

Скачать (87KB)
7. Рис. 6. Сравнение результатов автоматического и мануального методов лазерной дифракции при анализе осмотической резистентности эритроцитов человека. (a) — сравнение результатов по H90. (b) — сравнение по H50. (c) — сравнение по W. Усы — минимум и максимум, + — среднее значение, n = 15, ns — p > 0.05, Paired t test. (d) — QQ-plot для H90. (e) — QQ-plot для H50. (f) — QQ-plot для W. Predicted — квантили стандартного нормального распределения. (g) — корреляции между мануальным и автоматическим методами по параметрам H90. (h) — корреляция по H50. (i) — корреляция по W. левый верхний угол — Pearson r и p-value. LDM — мануальный метод лазерной дифракции, LDA — автоматический метод лазерной дифракции.

Скачать (77KB)
8. Рис. 7. Сравнение результатов автоматического и мануального методов лазерной дифракции при анализе осмотической резистентности эритроцитов крыс. (a) — сравнение результатов по H90. (b) — сравнение по H50. (c) — сравнение по W. Усы — минимум и максимум, + — среднее значение, n = 7, ns — p > 0.05, Paired t test. (d) — QQ-plot для H90. (e) — QQ-plot для H50. (f) — QQ-plot для W. Predicted — квантили стандартного нормального распределения.

Скачать (48KB)
9. Рис. 8. Сравнение осмотической резистентности эритроцитов различных видов позвоночных. (a) — сравнение результатов по H90. (b) — сравнение по H50. (c) — сравнение по W. Температуры: 15C для Lampetra fluviatilis (n = 30), 16C для Carassius carassius (n = 12), 18C для Rana ridibunda (n = 15), 41C для Coturnix japonica domestica (n = 6) и 37C для млекопитающих (n = 15 для Homo sapiens, n = 7 для Rattus norvegicus). Полупрозрачное облако — стандартное отклонение (sd). ns — p > 0.05, * — p < 0.05, ** — p < 0.01, *** — p < 0.001, Tukey’s multiple comparisons test. (d) — зависимости процента лизиса (Lys) от осмоляльности среды (Osm). Полупрозрачное облако — стандартное отклонение (sd). Использован мануальный метод лазерной дифракции.

Скачать (79KB)
10. Рис. 9. Сравнение осмотической резистентности эритроцитов различных видов позвоночных в %-х от исходной осмоляльности. (a) — сравнение результатов по H90. (b) — сравнение по H50. (c) — сравнение по W. Температуры и физиологические осмоляльности: 15C и 260 мОсм для Lampetra fluviatilis (n = 30), 16C и 260 мОсм для Carassius carassius (n = 12), 18C и 220 мОсм для Rana ridibunda (n = 15), 41C и 320 мОсм для Coturnix japonica (n = 6), 37C и 283 мОсм для Homo sapiens (n = 15), 37C и 294 мОсм для Rattus norvegicus (n = 7). Полупрозрачное облако — стандартное отклонение (sd). ns — p > 0.05, * — p < 0.05, ** — p < 0.01, *** — p < 0.001, Tukey’s multiple comparisons test. (d) — зависимости процента лизиса (Lys) от осмоляльности среды (Osm). Полупрозрачное облако — стандартное отклонение (sd). Использован мануальный метод лазерной дифракции.

Скачать (78KB)
11. Рис. 10. Сравнение гетерогенности популяции эритроцитов высших позвоночных по устойчивости к гипоосмотическому лизису. (a) — сравнение в абсолютных величинах (mOsm). (b) — Сравнение в относительных величинах (процент от физиологической осмоляльности плазмы). Температуры и физиологические осмоляльности: 41C и 320 мОсм для Coturnix japonica (n = 6), 37C и 283 мОсм для Homo sapiens (n = 15), 37C и 294 мОсм для Rattus norvegicus (n = 7). Использован мануальный метод лазерной дифракции. ns — p > 0.05, ** — p < 0.01, *** — p < 0.001, Tukey’s multiple comparisons test.

Скачать (15KB)

© Российская академия наук, 2024