Participation of the enzyme glycogen synthase kinase-3 and voltage-dependent Сa2+ channels in the vesicular cycle of transmitter secretion in cholinergic motor nerve endings of the somatic muscles of the earthworm Lumbricus terrestris
- Autores: Nurullin L.F.1,2, Peshehonov D.A.2, Volkov E.M.2
-
Afiliações:
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS
- Kazan State Medical University
- Edição: Volume 61, Nº 2 (2025)
- Páginas: 119-127
- Seção: EXPERIMENTAL ARTICLES
- URL: https://cijournal.ru/0044-4529/article/view/685052
- DOI: https://doi.org/10.31857/S0044452925020059
- EDN: https://elibrary.ru/IFDCJD
- ID: 685052
Citar
Resumo
The effects of specific blockers (ω-conotoxin GVIA, ω-agatoxin IVA, nitrendipine, SNX-482, mibefradil) of N, P/Q, L, R, and T-type potential-dependent Ca2+ channels were studied by fluorescence confocal microscopy, as well as the glycogen synthase kinase-3 enzyme inhibitor GSK3 (1-azakenpaullone) on exo-endovesicular cycle processes in cholinergic neuromuscular synapses of somatic muscle of the earthworm Lumbricus terrestris. The mechanisms of the vesicular cycle involve Ca2+ ions entering the terminals through all types of potential-dependent Ca2+ channels of the presynaptic membrane. At the same time, N-, P/Q-, and L-type Ca2+ channels contribute most to endocytosis processes, whereas only N- and P/Q-type channels contribute to exocytosis. Dynamin-dependent endocytosis plays an essential role in recycling processes, and the recovery of vesicular pools in such synapses is predominantly facilitated by clathrin-dependent endocytosis. It can be considered that the basic mechanisms of vesicular cycle regulation in motor neuromuscular synapses are common to the entire phylogenetic tree of vertebrates and invertebrates, beginning with annelids. At the same time, the importance of individual regulatory elements of the vesicular secretion machinery in annelids has its own distinct specificity.
Palavras-chave
Texto integral

Sobre autores
L. Nurullin
Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS; Kazan State Medical University
Autor responsável pela correspondência
Email: lenizn@yandex.ru
Rússia, Kazan; Kazan
D. Peshehonov
Kazan State Medical University
Email: lenizn@yandex.ru
Rússia, Kazan
E. Volkov
Kazan State Medical University
Email: euroworm@mail.ru
Rússia, Kazan
Bibliografia
- Südhof TC (2012) Calcium control of neurotransmitter release. Cold Spring Harb Perspect Biol 4: a011353. https://doi.org/10.1101/cshperspect.a011353
- Watanabe S, Boucrot E (2017) Fast and ultrafast endocytosis. Curr Opin Cell Biol 47: 64–71. https://doi.org/10.1016/j.ceb.2017.02.013
- Gan Q, Watanabe S (2018) Synaptic vesicle endocytosis in different model systems. Front Cell Neurosci 12: 171. https://doi.org/10.3389/fncel.2018.00171
- Prichard KL, O'Brien NS, Murcia SR, Baker JR, McCluskey A (2022) Role of clathrin and dynamin in clathrin mediated endocytosis/synaptic vesicle recycling and implications in neurological diseases. Front Cell Neurosci 15: 754110. https://doi.org/10.3389/fncel.2021.754110
- Clayton EL, Sue N, Smillie KJ, O'Leary T, Bache N, Cheung G, Cole AR, Wyllie DJ, Sutherland C, Robinson PJ, Cousin MA (2010) Dynamin I phosphorylation by GSK3 controls activity-dependent bulk endocytosis of synaptic vesicles. Nat Neurosci 13: 845–851. https://doi.org/10.1038/nn.2571
- Xue L, Zhang Z, McNeil BD, Luo F, Wu XS, Sheng J, Shin W, Wu LG (2012) Voltage-dependent calcium channels at the plasma membrane, but not vesicular channels, couple exocytosis to endocytosis. Cell Rep 1: 632–638. https://doi.org/10.1016/j.celrep.2012.04.011
- Parry L, Tanner A, Vinther J (2014) The origin of annelids. Front Palaeontology 57: 1091–1103. https://doi.org/10.1111/pala.12129
- Purschke G, Müller MCM (2006) Evolution of body wall musculature. Integr Comp Biol 46: 497–507. https://doi.org/10.1093/icb/icj053
- Nurullin LF, Almazov ND, Volkov EM (2024) Calcium-binding proteins in synaptic vesicle exo- and endocytosis in somatic motor nerve endings of the earthworm Lumbricus terrestris. J Evol Biochem Phys 60: 1818–1825. https://doi.org/10.1134/S0022093024050144
- Nurullin LF, Volkov EM (2020) Immunofluorescent identification of α1 isoform subunits of voltage-gated Ca2+-channels of CaV1, CaV2, and CaV3 families in areas of cholinergic synapses of somatic muscles in earthworm Lumbricus terrestris. Cell Tiss Biol 14: 316–323. https://doi.org/10.1134/S1990519X20040070
- Nurullin LF, Volkov EM (2024) Immunofluorescent identification of dystrophin, actin, and light and heavy myosin chains in somatic cells of earthworm Lumbricus terrestris. Cell Tiss Biol 18: 341–346. https://doi.org/10.1134/S1990519X24700287
- Nurullin LF, Almazov ND, Volkov EM (2023) Immunofluorescent identification of GABAergic structures in the somatic muscle of the earthworm Lumbricus terrestris. Biochem Moscow Suppl Ser A 17: 208–213. https://doi.org/10.1134/S1990747823040074
- Coleman WL, McCartney LE (2023) GABA has a presynaptic inhibitory effect at Lumbricus terrestris body wall muscle synapses. MicroPubl Biol 2023: 10.17912/micropub.biology.001055. https://doi.org/10.17912/micropub.biology.001055
- Dolphin AC (2021) Functions of presynaptic voltage-gated calcium channels. Function (Oxf) 2: zqaa027. https://doi.org/10.1093/function/zqaa027
- Kaeser PS, Deng L, Wang Y, Dulubova I, Liu X, Rizo J, Südhof TC (2011) RIM proteins tether Ca(2+) channels to presynaptic active zones via a direct PDZ-domain interaction. Cell 144: 282–295. https://doi.org/10.1016/j.cell.2010.12.029
- Kusch V, Bornschein G, Loreth D, Bank J, Jordan J, Baur D, Watanabe M, Kulik A, Heckmann M, Eilers J, Schmidt H (2018) Munc13-3 Is required for the developmental localization of Ca(2+) channels to active zones and the nanopositioning of Cav2.1 near release sensors. Cell Rep 22: 1965–1973. https://doi.org/10.1016/j.celrep.2018.02.010
- Li L, Bischofberger J, Jonas P (2007) Differential gating and recruitment of P/Q-, N-, and R-type Ca2+ channels in hippocampal mossy fiber boutons. J Neurosci 27: 13420–13429. https://doi.org/10.1523/jneurosci.1709-07.2007
- Krick N, Ryglewski S, Pichler A, Bikbaev A, Götz T, Kobler O, Heine M, Thomas U, Duch C (2021) Separation of presynaptic Cav2 and Cav1 channel function in synaptic vesicle exo- and endocytosis by the membrane anchored Ca2+ pump PMCA. Proc Natl Acad Sci U S A 118: e2106621118. https://doi.org/10.1073/pnas.2106621118
- Mueller BD, Merrill SA, Watanabe S, Liu P, Niu L, Singh A, Maldonado-Catala P, Cherry A, Rich MS, Silva M, Maricq AV, Wang ZW, Jorgensen EM (2023) CaV1 and CaV2 calcium channels mediate the release of distinct pools of synaptic vesicles. Elife 12: e81407. https://doi.org/10.7554/eLife.81407
- Shpetner HS, Vallee RB (1989) Identification of dynamin, a novel mechanochemical enzyme that mediates interactions between microtubules. Cell 59: 421–432.https://doi.org/10.1016/0092-8674(89)90027-5
- Praefcke GJ, McMahon HT (2004) The dynamin superfamily: universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol 5: 133–147. https://doi.org/10.1038/nrm1313
- Ramachandran R, Schmid SL (2018) The dynamin superfamily. Curr Biol 28: R411–R416. https://doi.org/10.1016/j.cub.2017.12.013
- Cao H, Garcia F, McNiven MA (1998) Differential distribution of dynamin isoforms in mammalian cells. Mol Biol Cell 9: 2595–2609. https://doi.org/10.1091/mbc.9.9.2595
- Ferguson SM, Brasnjo G, Hayashi M, Wölfel M, Collesi C, Giovedi S, Raimondi A, Gong LW, Ariel P, Paradise S, O'toole E, Flavell R, Cremona O, Miesenböck G, Ryan TA, De Camilli P (2007) A selective activity-dependent requirement for dynamin 1 in synaptic vesicle endocytosis. Science 316: 570–574. https://doi.org/10.1126/science.1140621
- Cook TA, Urrutia R, McNiven MA (1994) Identification of dynamin 2, an isoform ubiquitously expressed in rat tissues. Proc Natl Acad Sci U S A 91: 644–648. https://doi.org/10.1073/pnas.91.2.644
- Raimondi A, Ferguson SM, Lou X, Armbruster M, Paradise S, Giovedi S, Messa M, Kono N, Takasaki J, Cappello V, O'Toole E, Ryan TA, De Camilli P (2011) Overlapping role of dynamin isoforms in synaptic vesicle endocytosis. Neuron 70: 1100–1114. https://doi.org/10.1016/j.neuron.2011.04.031
- van der Bliek AM, Meyerowitz EM (1991) Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic. Nature 351: 411–414. https://doi.org/10.1038/351411a0
- Clark SG, Shurland DL, Meyerowitz EM, Bargmann CI, van der Bliek AM (1997) A dynamin GTPase mutation causes a rapid and reversible temperature-inducible locomotion defect in C. elegans. Proc Natl Acad Sci U S A 94: 10438–10443. https://doi.org/10.1073/pnas.94.19.10438
- Newton AJ, Kirchhausen T, Murthy VN (2006) Inhibition of dynamin completely blocks compensatory synaptic vesicle endocytosis. Proc Natl Acad Sci U S A 103: 17955–17960. https://doi.org/10.1073/pnas.0606212103
- Jackson J, Papadopulos A, Meunier FA, McCluskey A, Robinson PJ, Keating DJ (2015) Small molecules demonstrate the role of dynamin as a bi-directional regulator of the exocytosis fusion pore and vesicle release. Mol Psychiatry 20: 810–819. https://doi.org/10.1038/mp.2015.56
- Shi B, Jin YH, Wu LG (2022) Dynamin 1 controls vesicle size and endocytosis at hippocampal synapses. Cell Calcium 103: 102564. https://doi.org/10.1016/j.ceca.2022.102564
- Lu W, Ma H, Sheng ZH, Mochida S (2009) Dynamin and activity regulate synaptic vesicle recycling in sympathetic neurons. J Biol Chem 284: 1930–1937. https://doi.org/10.1074/jbc.m803691200
- Kasprowicz J, Kuenen S, Swerts J, Miskiewicz K, Verstreken P (2014) Dynamin photoinactivation blocks Clathrin and α-adaptin recruitment and induces bulk membrane retrieval. J Cell Biol 204: 1141–1156. https://doi.org/10.1083/jcb.201310090
- Douthitt HL, Luo F, McCann SD, Meriney SD (2011) Dynasore, an inhibitor of dynamin, increases the probability of transmitter release. Neuroscience 172: 187–195. https://doi.org/10.1016/j.neuroscience.2010.10.002
Arquivos suplementares
