Development of Acomys cahirinus in the laboratory conditions

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The Cairo spiny mouse (Acomys cahirinus) is a unique animal model for studying ontogenesis and regeneration. At the same time, the features of its biology, in particular, the small number of pups in the litter, significantly complicate research work. The aim of the article was to study the behavior and reproduction of the Cairo spiny mice and to create the reproductive nucleus of the colony in our laboratory. This article describes the husbandry of Cairo spiny mice, and techniques of working with them, such as optimizing the diet and housing conditions, handling and marking for individual identification, and also some reproductive parameters of the colony. We have optimized the animal diet by adding dry arthropods, an important component of the spiny mice natural diet, as well as enriched the environment by placing to each cage the running wheels, tunnels and houses. As a result, an increase in the number of animals was obtained by more than 50% over 9 months; the overall survival rate of the offspring was 98%.

Texto integral

Acesso é fechado

Sobre autores

P. Shkorbatova

Pavlov Institute of Physiology of the Russian Academy of Sciences

Email: merkulyevan@infran.ru
Rússia, St. Petersburg

A. Veshchitskii

Pavlov Institute of Physiology of the Russian Academy of Sciences

Email: merkulyevan@infran.ru
Rússia, St. Petersburg

A. Mikhalkin

Pavlov Institute of Physiology of the Russian Academy of Sciences

Email: merkulyevan@infran.ru
Rússia, St. Petersburg

N. Nikitina

Pavlov Institute of Physiology of the Russian Academy of Sciences

Email: merkulyevan@infran.ru
Rússia, St. Petersburg

A. Belyaev

Pavlov Institute of Physiology of the Russian Academy of Sciences

Email: merkulyevan@infran.ru
Rússia, St. Petersburg

N. Merkulyeva

Pavlov Institute of Physiology of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: merkulyevan@infran.ru
Rússia, St. Petersburg

Bibliografia

  1. Brunjes PC (1990) The precocial mouse, Acomys cahirinus. Psychobiology 18:339–350. https://doi.org/10.3758/BF03327252
  2. Jeremy P, Bates J (1994) The distribution of Acomys (Rodentia: Muridae) in Africa and Asia. Isr J Zool 40:199–214. https://doi.org/10.1080/00212210.1994.10688748
  3. Pinheiro G, Prata DF, Araújo IM, Tiscornia G (2018) The African spiny mouse (Acomys spp.) as an emerging model for development and regeneration. Lab Anim 52:565–576. https://doi.org/10.1177/0023677218769921
  4. Carleton MD, Musser GG (1984) Muroid rodents. In: Anderson S, Jones JK (eds) Orders and families of recent mammals of the world. Wiley, New York, pp. 289–379
  5. Denys C (1990) The oldest Acomys (Rodentia, Muridae) from the lower Pliocene of South Africa and the problem of its murid affinities. Paleontogr Abt A 210:79–91
  6. Barome P-O, Volobuev V, Monnerot M, Mfune JK, Chitaukali W, Gautun J-C, Denys C (2001) Phylogeny of Acomys spinosissimus (Rodentia, Muridae) from north Malawi and Tanzania: evidence from morphological and molecular analysis. Biol J Linn Soc 73:321–340. https://doi.org/10.1111/j.1095-8312.2001.tb01366.x
  7. Denys C, Michaux J, Peter F, Aguilar JP, Jaeger JJ (1992) Molar morphology as a clue to the phylogenetic relationship of Acomys to the murinae. Isr J Zool 38:253–262. https://doi.org/10.1080/00212210.1992.10688673
  8. Chevret P, Denys C, Jaeger JJ, Michaux J, Catzeflis FM (1993) Molecular evidence that the spiny mouse (Acomys) is more closely related to gerbils (Gerbillinae) than to true mice (Murinae). Proc Natl Acad Sci 90:3433–3436. https://doi.org/10.1073/pnas.90.8.3433
  9. Hänni C, Laudet V, Barriel V, Catzeflis FM (1995) Evolutionary relationships of Acomys and other murids (Rodentia, mammalia) based on complete 12s rrna mitochondrial gene sequences. Isr J Zool 41:131–146. https://doi.org/10.1080/00212210.1995.10688785
  10. Gustavsen CR, Kvicerova J, Dickinson H, Heller RS (2009) Acomys, the closest relatives to Gerbils, do express Pdx-1 protein and have similar islet morphology to Gerbils. Islets 1:191–197. https://doi.org/10.4161/isl.1.3.9557
  11. Morrison P, Dieterich R, Preston D (1977) Longevity and mortality in 15 rodent species and subspecies maintained in laboratory colonies. Acta Theriol (Warsz) 22:317–335. https://doi.org/10.4098/AT.arch.77-29
  12. Brunjes PC (1984) Hippocampal maturation in the precocial murid rodent Acomys cahirinus. Brain Behav Evol 24:58–64. https://doi.org/10.1159/000121305
  13. Brunjes PC (1985) A stereological study of neocortical maturation in the precocial mouse, Acomys cahirinus. Dev Brain Res 19:279–287. https://doi.org/10.1016/0165-3806(85)90199-3
  14. Porter RH, Makin JW, Matochik JA (1986) Physical and behavioral sequelae of low birthweight in spiny mice (Acomys cahirinus). Dev Psychobiol 19:463–472. https://doi.org/10.1002/dev.420190507
  15. Kronfeld-Schor N, Dayan T (1999) The dietary basis for temporal partitioning: food habits of coexisting Acomys species. Oecologia 121:123–128. https://doi.org/10.1007/s004420050913
  16. Kronfeld-Schor N, Dayan T, Jones ME, Kremer I, Mandelik Y, Wollberg M, Yassur Y, Gaton DD (2001) Retinal structure and foraging microhabitat use of the golden spiny mouse (Acomys russatus). J Mammal 82:1016–1025. https://doi.org/10.1644/1545-1542(2001)082<1016:RSAFMU>2.0.CO;2
  17. Cohen R, Kronfeld-Schor N, Ramanathan C, Baumgras A, Smale L (2010) The substructure of the suprachiasmatic nucleus: Similarities between nocturnal and diurnal spiny mice. Brain Behav Evol 75:9–22. https://doi.org/10.1159/000282172
  18. Hoole C, Oosthuizen MK, Chimimba CT, Bennett NC (2012) The locomotory activity rhythm of the spiny mouse, Acomys spinosissimus from southern Africa: light entrainment and endogenous circadian rhythms. J Zool 288:93–102. https://doi.org/10.1111/j.1469-7998.2012.00928.x
  19. Montandon SA, Tzika AC, Martins AF, Chopard B, Milinkovitch MC (2014) Two waves of anisotropic growth generate enlarged follicles in the spiny mouse. Evodevo 5:33. https://doi.org/10.1186/2041-9139-5-33
  20. Haughton CL, Gawriluk TR, Seifert AW (2016) The biology and husbandry of the african spiny mouse (Acomys cahirinus) and the research uses of a laboratory colony. J Am Assoc Lab Anim Sci 55:9–17.
  21. Denys C, Gautun JC, Tranier M, Volobouev V (1994) Evolution of the genus Acomys (Rodentia, Muridae) from dental and chromosomal patterns. Isr J Zool 40:215–246. https://doi.org/10.1080/00212210.1994.10688749
  22. Volobuev V, Auffray JC, Debat V, Denys C, Gautun JC, Tranier M (2007) Species delimitation in the Acomys cahirinus-dimidiatus complex (Rodentia, Muridae) inferred from chromosomal and morphological analyses. Biol J Linn Soc 91:203–214. https://doi.org/10.1111/j.1095-8312.2007.00773.x
  23. Aghová T, Palupčíková K, Šumbera R, Frynta D, Lavrenchenko LA, Meheretu Y, Sádlová J, Votýpka J, Mbau JS, Modrý D, Bryja J (2019) Multiple radiations of spiny mice (Rodentia: Acomys) in dry open habitats of Afro-Arabia: evidence from a multi-locus phylogeny. BMC Evol Biol 19:69. https://doi.org/10.1186/s12862-019-1380-9
  24. Shkolnik A, Borut A (1969) Temperature and water relations in two species of spiny mice (Acomys). J Mammal 50:245–255. https://doi.org/10.2307/1378340
  25. Dawirs RR, Teuchert-Noodt G, Kacza J (1992) Naturally occurring degrading events in axon terminals of the dentate gyrus and stratum lucidum in the spiny mouse (Acomys cahirinus) during maturation, adulthood and aging. Dev Neurosci 14:210–220. https://doi.org/10.1159/000111665
  26. Dickinson H, Walker DW (2007) Managing a colony of spiny mice (Acomys cahirinus) for perinatal research. Aust New Zeal Counc Care Anim Res Train News 20:4–11.
  27. Wong W, Kim A, Monaghan JR, Seifert AW, Maden M, Crane JD (2020) Spiny mice (Acomys) exhibit attenuated hallmarks of aging and rapid cell turnover after UV exposure in the skin epidermis. PLoS One 15: e0241617. https://doi.org/10.1371/journal.pone.0241617
  28. Weigl R (2005) Longevity of mammals in captivity; from the living collections of the world: a list of mammalian longevity in captivity. Kleine Senckenberg-r 214.
  29. Cohen R, Smale L, Kronfeld‐Schor N (2009) Plasticity of circadian activity and body temperature rhythms in golden spiny mice. Chronobiol Int 26:430–446. https://doi.org/10.1080/07420520902820939
  30. Shargal E, Rath‐Wolfson L, Kronfeld N, Dayan T (1999) Ecological and histological aspects of tail loss in spiny mice (Rodentia: Muridae, Acomys) with a review of its occurrence in rodents. J Zool 249:187–193. https://doi.org/10.1111/j.1469-7998.1999.tb00757.x
  31. Brant JO, Yoon JH, Polvadore T, Barbazuk WB, Maden M (2016) Cellular events during scar‐free skin regeneration in the spiny mouse, Acomys. Wound Repair Regen 24:75–88. https://doi.org/10.1111/wrr.12385
  32. Maden M (2018) Optimal skin regeneration after full thickness thermal burn injury in the spiny mouse, Acomys cahirinus. Burns 44:1509–1520. https://doi.org/10.1016/j.burns.2018.05.018
  33. Seifert AW, Kiama SG, Seifert MG, Goheen JR, Palmer TM, Maden M (2012) Skin shedding and tissue regeneration in African spiny mice (Acomys). Nature 489:561–565. https://doi.org/10.1038/nature11499
  34. Okamura DM, Brewer CM, Wakenight P, Bahrami N, Bernardi K, Tran A, Olson J, Shi X, Yeh S-Y, Piliponsky A, Collins SJ, Nguyen ED, Timms AE, MacDonald JW, Bammler TK, Nelson BR, Millen KJ, Beier DR, Majesky MW (2021) Spiny mice activate unique transcriptional programs after severe kidney injury regenerating organ function without fibrosis. iScience 24:103269. https://doi.org/10.1016/j.isci.2021.103269
  35. Maden M, Brant JO, Rubiano A, Sandoval AGW, Simmons C, Mitchell R, Collin-Hooper H, Jacobson J, Omairi S, Patel K (2018) Perfect chronic skeletal muscle regeneration in adult spiny mice, Acomys cahirinus. Sci Rep 8:1–14. https://doi.org/10.1038/s41598-018-27178-7
  36. Peng H, Shindo K, Donahue RR, Gao E, Ahern BM, Levitan BM, Tripathi H, Powell D, Noor A, Elmore GA, Satin J, Seifert AW, Abdel-Latif A (2021) Adult spiny mice (Acomys) exhibit endogenous cardiac recovery in response to myocardial infarction. npj Regen Med 6:74. https://doi.org/10.1038/s41536-021-00186-4
  37. Streeter KA, Sunshine MD, Brant JO, Sandoval AGW, Maden M, Fuller DD (2020) Molecular and histologic outcomes following spinal cord injury in spiny mice, Acomys cahirinus. J Comp Neurol 528:1535–1547. https://doi.org/10.1002/cne.24836
  38. Nogueira-Rodrigues J, Leite SC, Pinto-Costa R, Sousa SC, Luz LL, Sintra MA, Oliveira R, Monteiro AC, Pinheiro GG, Vitorino M, Silva JA, Simão S, Fernandes VE, Provazník J, Benes V, Cruz CD, Safronov B V., Magalhães A, Reis CA, Vieira J, Vieira CP, Tiscórnia G, Araújo IM, Sousa MM (2022) Rewired glycosylation activity promotes scarless regeneration and functional recovery in spiny mice after complete spinal cord transection. Dev Cell 57:440-450.e7. https://doi.org/10.1016/j.devcel.2021.12.008
  39. Maden M, Varholick JA (2020) Model systems for regeneration: the spiny mouse, Acomys cahirinus. Development 147: dev167718. https://doi.org/10.1242/dev.167718
  40. Gaire J, Varholick JA, Rana S, Sunshine MD, Doré S, Barbazuk WB, Fuller DD, Maden M, Simmons CS (2021) Spiny mouse (Acomys): an emerging research organism for regenerative medicine with applications beyond the skin. npj Regen Med 6:1. https://doi.org/10.1038/s41536-020-00111-1
  41. Young DAB (1976) Breeding and fertility of the egyptian spiny mouse, Acomys cahirinus: effect of different environments. Lab Anim 10:15–24. https://doi.org/10.1258/002367776780948961
  42. Lambert LJ, Muzumdar MD, Rideout WM, Jacks T (2017) Basic mouse methods for clinician researchers. In: Basic Science Methods for Clinical Researchers. Elsevier, pp. 291–312
  43. Parra-Vargas M, Bouret SG, Bruning JC, de Moura EG, Garland T, Lisboa PC, Ozanne SE, Patti M-E, Plagemann A, Speakman JR, Tena-Sempere M, Vergely C, Zeltser LM, Jiménez-Chillarón JC (2023) The long-lasting shadow of litter size in rodents: litter size is an underreported variable that strongly determines adult physiology. Mol Metab 71:101707. https://doi.org/10.1016/j.molmet.2023.101707
  44. Stevens S, Mohan S (2021) Opioid withdrawal behavior in spiny mice: A novel preclinical model of neonatal opioid withdrawal syndrome (NOWS). Heliyon 7: e06694. https://doi.org/10.1016/j.heliyon.2021.e06694
  45. Lamers WH, Mooren PG, Charles R (1985) Perinatal development of the small intestine and pancreas in rat and spiny mouse. Biol Neonate 47:153–162. https://doi.org/10.1159/000242107
  46. Lamers WH, Mooren PG, De Graaf A, Charles R (1985) Perinatal development of the liver in rat and spiny mouse. Eur J Biochem 146:475–480. https://doi.org/10.1111/j.1432-1033.1985.tb08675.x
  47. Dickinson H, Walker DW, Cullen-McEwen L, Wintour EM, Moritz K (2005) The spiny mouse (Acomys cahirinus) completes nephrogenesis before birth. Am J Physiol Physiol 289: F273–F279. https://doi.org/10.1152/ajprenal.00400.2004
  48. Tessitore C, Brunjes PC (1988) A comparative study of myelination in precocial and altricial murid rodents. Dev Brain Res 43:139–147. https://doi.org/10.1016/0165-3806(88)90159-9
  49. Дмитриева ДЯ, Даниленкова ЛВ, Гоццо С (1987) Сравнительное исследование мозга у зрело- и незрелорождакцкся грызунов из семейства мышиных. Журнал эволюционной биохимии и физиологии 23:127–131. [Dmitrieva DY, Danilenkova LV, Gocco S (1987) Comparative study of the brain in mature and immature rodents from the mouse family. Zhurnal evolyucionnoj biohimii i fiziologii 23:127–131. (In Russ)]
  50. Даниленкова ЛБ (1992) Морфометрическое исследование постнатального синаптогенеза в неокортексе зрело- и незрелорождающихся грызунов. Журнал эволюционной биохимии и физиологии 28:140–142. [Danilenkova LB (1992) Morphometric study of postnatal synaptogenesis in the neocortex of mature- and immature-borning rodents. Zhurnal evolyucionnoj biohimii i fiziologii 28:140–142. (In Russ)].
  51. Gozzo S, Dimitrieva N, Iacopino C, D’udine B (1985) A comparative study of mossy fiber distribution in the brain of the precocial Acomys cahirinus and of the altricial Rattus norvegicus: Neuroanatomical bases and behavioral correlates. Int J Neurosci 28:163–172. https://doi.org/10.3109/00207458508985387
  52. Bellofiore N, Ellery SJ, Mamrot J, Walker DW, Temple-Smith P, Dickinson H (2017) First evidence of a menstruating rodent: the spiny mouse (Acomys cahirinus). Am J Obstet Gynecol 216:40.e1–40.e11. https://doi.org/10.1016/j.ajog.2016.07.041
  53. Bellofiore N, Evans J (2019) Monkeys, mice and menses: the bloody anomaly of the spiny mouse. J Assist Reprod Genet 36:811–817. https://doi.org/10.1007/s10815-018-1390-3
  54. Bellofiore N, George E, Vollenhoven B, Temple-Smith P (2021) Reproductive aging and menopause-like transition in the menstruating spiny mouse (Acomys cahirinus). Hum Reprod 36:3083–3094. https://doi.org/10.1093/humrep/deab215
  55. Gonet AE, Stauffacher W, Pictet R, Renold AE (1966) Obesity and diabetes mellitus with striking congenital hyperplasia of the islets of langerhans in spiny mice (Acomys cahirinus). Diabetologia 1:162–171. https://doi.org/10.1007/BF01257907
  56. Pictet R, Orci L, Gonet AE, Rouiller C, Renold AE (1967) Ultrastructural studies of the hyperplastic islets of Langerhans of spiny mice (Acomys cahirinus) before and during the development of hyperglycemia. Diabetologia 3:188–211. https://doi.org/10.1007/BF01222197
  57. Trueheart PA, Maldonato A, Kaelin D, Renold AE, Sharp GWG (1976) Proinsulin synthesis in islets of Langerhans from spiny mice (Acomys cahirinus). comparison with rats and mice. Diabetologia 12:463–470. https://doi.org/10.1007/BF01219510
  58. Shafrir E (2000) Overnutrition in spiny mice (Acomys cahirinus): β-cell expansion leading to rupture and overt diabetes on fat-rich diet and protective energy-wasting elevation in thyroid hormone on sucrose-rich diet. Diabetes Metab Res Rev 16:94–105. https://doi.org/10.1002/(SICI)1520-7560(200003/04)16:2<94::AID-DMRR82>3.0.CO;2-U
  59. Kumar S, Singh R, Vasudeva N, Sharma S (2012) Acute and chronic animal models for the evaluation of anti-diabetic agents. Cardiovasc Diabetol 11:9. https://doi.org/10.1186/1475-2840-11-9
  60. Shafrir E, Ziv E, Kalman R (2006) Nutritionally induced diabetes in desert rodents as models of type 2 diabetes: Acomys cahirinus (spiny mice) and Psammomys obesus (desert gerbil). ILAR J 47:212–224. https://doi.org/10.1093/ilar.47.3.212
  61. Colby LA, Rush HG, Mahoney MM, Lee TM (2012) Degu. In: The laboratory rabbit, guinea pig, hamster, and other rodents. Elsevier, pp 1031–1053
  62. Canova L, Fasola M (1994) Population density and diet of the Spiny Mouse Acomys cf. cahirinus (Rodentia) in a desertic area of northern Kenya. Rev d’Écologie (La Terre La Vie) 49:87–90. https://doi.org/10.3406/revec.1994.2129
  63. Chen M, Kan L, Ledford BT, He J-Q (2016) Tattooing various combinations of ears, tail, and toes to identify mice reliably and permanently. J Am Assoc Lab Anim Sci 55:189–198.
  64. Matias Santos D, Rita AM, Casanellas I, Brito Ova A, Araújo IM, Power D, Tiscornia G (2016) Ear wound regeneration in the African spiny mouse Acomys cahirinus. Regeneration 3:52–61. https://doi.org/10.1002/reg2.50
  65. Carere C, Casetti R, de Acetis L, Perretta G, Cirulli F, Alleva E (1999) Behavioural and nociceptive response in male and female spiny mice (Acomys cahirinus) upon exposure to snake odour. Behav Processes 47:1–10. https://doi.org/10.1016/S0376-6357(99)00048-0
  66. Gouveia K, Hurst JL (2013) Reducing mouse anxiety during handling: effect of experience with handling tunnels. PLoS One 8: e66401. https://doi.org/10.1371/journal.pone.0066401
  67. Bogdanske JJ, Van Stelle SH, Riley MR, Schiffman BM (2010) Laboratory mouse and laboratory rat procedural techniques, 1st ed. CRC Press
  68. The university of Queensland Animal Ethics Committee, Handling and restraint in rats and neonates (LAB_039). https://www.uq.edu.au/research/files/52592/LAB_039
  69. Queen’s University Care Committee Standard Operating Procedure, Manual Restraint of Rats (Document 10.20). https://www.queensu.ca/animals-in-science/policies-procedures/sop/rats/10-20
  70. Gonzalez Abreu JA, Rosenberg AE, Fricker BA, Wallace KJ, Seifert AW, Kelly AM (2022) Species-typical group size differentially influences social reward neural circuitry during nonreproductive social interactions. iScience 25:104230. https://doi.org/10.1016/j.isci.2022.104230
  71. Fricker BA, Seifert AW, Kelly AM (2022) Characterization of social behavior in the spiny mouse, Acomys cahirinus. Ethology 128:26–40. https://doi.org/10.1111/eth.13234
  72. Porter RH (1976) Sex‐differences in the agonistic behavior of spiny‐mice (Acomys cahirinus). Z Tierpsychol 40:100–108. https://doi.org/10.1111/j.1439–0310.1976.tb00928.x
  73. Porter RH, Doane HM (1978) Studies of maternal behavior in spiny mice (Acomys cahirinus). Z Tierpsychol 47:225–235. https://doi.org/10.1111/j.1439-0310.1978.tb01833.x
  74. Varholick JA, Godinez G, Mobin S, Jenkins A, Romeo RD, Corll J, Barbazuk WB, Maden M (2022) Social dominance status and social stability in spiny mice (Acomys cahirinus) and its relation to ear-hole regeneration and glucocorticoids. bioRxiv 2022.09.13.507818. https://doi.org/10.1101/2022.09.13.507818
  75. Varholick JA, Godinez G, Jenkins A, Mobin S, Maden M (2024) Bite wounds and dominance structures in male and female African spiny mice (Acomys cahirinus): implications for animal welfare and the generalizability of experimental results. Animals 14:64. https://doi.org/10.3390/ani14010064
  76. Degen AA, Khokhlova IS, Kam M, Snider I (2002) Energy requirements during reproduction in female common spiny mice (Acomys cahirinus). J Mammal 83:645–651. https://doi.org/10.1644/1545-1542(2002)083<0645:ERDRIF>2.0.CO;2
  77. Frynta D, Fraňková M, Čížková B, Skarlandtová H, Galeštoková K, Průšová K, Šmilauer P, Šumbera R (2011) Social and life history correlates of litter size in captive colonies of precocial spiny mice (Acomys). Acta Theriol (Warsz) 56:289–295. https://doi.org/10.1007/s13364-011-0024-2
  78. Bacon SJ, McClintock MK (1999) Sex ratio bias in postpartum-conceived Norway rat litters is produced by embryonic loss in midpregnancy. Reproduction 117:403–411. https://doi.org/10.1530/jrf.0.1170403
  79. Krackow S, Gruber F (1990) Sex ratio and litter size in relation to parity and mode of conception in three inbred strains of mice. Lab Anim 24:345–352. https://doi.org/10.1258/002367790780865895
  80. Genzer SC, Flietstra T, Coleman-McCray JD, Tansey C, Welch SR, Spengler JR (2023) Effect of parental age, parity, and pairing approach on reproduction in strain 13/N guinea pigs (Cavia porcellus). Animals 13:895. https://doi.org/10.3390/ani13050895
  81. Biggers JD, Finn CA, McLaren A (1962) Long-term reproductive performance of female mice. Reproduction 3:313–330. https://doi.org/10.1530/jrf.0.0030313
  82. Dieterlen F (1962) Geburt und Geburtshilfe bei der Stachelmaus, Acomys cahirinus. Z Tierpsychol 19:191–222. https://doi.org/10.1111/j.1439–0310.1962.tb00769.x
  83. Dickinson H, Griffiths T, Walker DW, Jenkin G (2008) Application of clinical indices of fetal growth and wellbeing to a novel laboratory species, the spiny mouse. Reprod Biol 8:229–243. https://doi.org/10.1016/S1642-431X(12)60014-X
  84. Brajon S, Morello GM, Capas-Peneda S, Hultgren J, Gilbert C, Olsson A (2021) All the pups we cannot see: cannibalism masks perinatal death in laboratory mouse breeding but infanticide is rare. Animals 11:2327. https://doi.org/10.3390/ani11082327
  85. Whitaker JW, Moy SS, Pritchett-Corning KR, Fletcher CA (2016) Effects of enrichment and litter parity on reproductive performance and behavior in BALB/c and 129/Sv Mice. J Am Assoc Lab Anim Sci 55:387–399.
  86. Czarnecki R, Adamski M (2016) Factors influencing litter size and birthweight in the newborn long-haired guinea pigs (Cavia aperea f. porcellus). J Appl Anim Res 44:71–76. https://doi.org/10.1080/09712119.2015.1013961
  87. Argente-Arizón P, Ros P, Díaz F, Fuente-Martin E, Castro-González D, Sánchez-Garrido MÁ, Barrios V, Tena-Sempere M, Argente J, Chowen JA (2016) Age and sex dependent effects of early overnutrition on metabolic parameters and the roleof neonatal androgens. Biol Sex Differ 7:26. https://doi.org/10.1186/s13293-016-0079-5
  88. Michalek H, Pintor A, Fortuna S, Bisso GM (1984) Brain acetylcholinesterase and its molecular forms in a precocial murid, Acomys cahirinus, and rat during post-natal development. Acta Biochim Pol 31:149–160.
  89. Stern JJ (1971) Litter size and weight gain of neonatal guinea pigs. Psychol Rep 28:981–982. https://doi.org/10.2466/pr0.1971.28.3.981
  90. Guerrero Pincay AE, González Marcillo RL, Castro Guamàn WE, Ortiz Naveda NR, Grefa Reascos DA, Guamàn Rivera SA (2020) Influence of litter size at birth on productive parameters in guinea pigs (Cavia porcellus). Animals 10:2059. https://doi.org/10.3390/ani10112059

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Housing conditions and sex determination. (a) — General view of the cage and habitat. (b) — Handling using a transparent tube. (c) — Sex determination in adult and newborn Cairo spiny mice.

Baixar (533KB)
3. Fig. 2. Animal markings. (a) — Photo of the right foot of a Cairo spiny mouse with a tattoo on the 3rd toe (animal number 3). (b) — Scheme of coding animal numbers: tattoos on the right paw mean units, on the left — tens; tattoos on the pads of the right foot — hundreds.

Baixar (171KB)
4. Fig. 3. Fixation of the animal in a towel (a) and subsequent implementation of routine procedures: (b) - intramuscular injection in the shin area, (c) - intraperitoneal injection, (d) - subcutaneous injection in the fold on the side, (e) - drinking.

Baixar (906KB)
5. Fig. 4. Body weight gain in females during gestation. (a) — Individual weight gain curves for three females; the gray triangle marks the time interval during which visible body weight gain occurs. (b) — Average data for the group. (c–d) — Relationship between the number of offspring in a litter and female weight gain from pre-pregnancy values ​​to values ​​immediately before parturition: (c) — percentage weight gain %, (d) — absolute weight, the line on the graph is the linear regression curve; ** p < 0.01; *** p < 0.001.

Baixar (217KB)
6. Fig. 5. Weight gain of cubs after birth. (a) — Individual weight gain curves for three cubs. (b) — Average data for groups of cubs. (c) — Average data for male (black) and female (gray) cubs. (d) — Average data for adult males (M) and females (F). * — differences between ages (Kruskal–Wallis test); # — differences between sexes (Mann–Whitney test); * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001; # p < 0.05; ## p < 0.01; #### p < 0.0001.

Baixar (256KB)
7. Fig. 6. Dynamics of male weight during 13-week monitoring. (a) — Average data for the group. (b) — Individual values ​​for all animals. ** p < 0.01.

Baixar (138KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024