Female BALB/c mice prefer the odor of mates producing fewer progeny
- Authors: Khotskina A.S.1, Patrushev Y.V.2, Yusupova D.I.1, Gerlinskaya L.A.1, Maslennikova S.O.1, Petrovskii D.V.1, Moshkin M.P.1, Zavjalov E.L.1
-
Affiliations:
- The Federal Research Center Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Science
- The Federal Research Center Boreskov Institute of Catalysis of the Siberian Branch of the Russian Academy of Science
- Issue: Vol 60, No 3 (2024)
- Pages: 244-253
- Section: EXPERIMENTAL ARTICLES
- URL: https://cijournal.ru/0044-4529/article/view/648078
- DOI: https://doi.org/10.31857/S0044452924030036
- EDN: https://elibrary.ru/YXTOKC
- ID: 648078
Cite item
Abstract
Mate choice is the very important part of sexual selection. It is known that free mate choice is to provide the most viable offspring are born. Researches on different animal species found that viability from introduction to sexual maturity is significantly higher in individuals born in crossbreeding in accordance with free behavioral mate choice, compared to that in crossbreeding against the mate choice. Making the choice, the female may rely on visual, vocal or olfactory signals of male. Most of experiments evaluating sexual choice allowing interactions with the animal, making it impossible to determine the specific contribution of each separate signal. Odor play a crucial role in intraspecific communication in rodents. Individuals are able to recognize sex, reproductive status, genotype, and diet and health condition conspecifics by odor. However, very few articles unite olfactory signals from the male to information about his paternal effects. In our research, we mated a male with two females. The number of live embryos, their weight and the weight of fetal placentas evaluated reproductive success of males. Naive females in olfactory tests then evaluated the volatile urine fraction of the males. Male urine samples were also analyzed using chromatography-mass spectrometry analysis. In result, the naive BALB/c females prefer males with low number of fetus in the litter compared to males with high number of fetus in the litter. Instrumental method of analysis approved the opportunity to differentiate between the groups of males. Other pregnancy parameters did not affect naive females’ preference for male urine samples.
Full Text

About the authors
A. S. Khotskina
The Federal Research Center Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Science
Author for correspondence.
Email: dotcenko@bionet.nsc.ru
Russian Federation, Novosibirsk
Y. V. Patrushev
The Federal Research Center Boreskov Institute of Catalysis of the Siberian Branch of the Russian Academy of Science
Email: dotcenko@bionet.nsc.ru
Russian Federation, Novosibirsk
D. I. Yusupova
The Federal Research Center Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Science
Email: dotcenko@bionet.nsc.ru
Russian Federation, Novosibirsk
L. A. Gerlinskaya
The Federal Research Center Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Science
Email: dotcenko@bionet.nsc.ru
Russian Federation, Novosibirsk
S. O. Maslennikova
The Federal Research Center Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Science
Email: dotcenko@bionet.nsc.ru
Russian Federation, Novosibirsk
D. V. Petrovskii
The Federal Research Center Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Science
Email: dotcenko@bionet.nsc.ru
Russian Federation, Novosibirsk
M. P. Moshkin
The Federal Research Center Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Science
Email: dotcenko@bionet.nsc.ru
Russian Federation, Novosibirsk
E. L. Zavjalov
The Federal Research Center Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Science
Email: dotcenko@bionet.nsc.ru
Russian Federation, Novosibirsk
References
- Мошкин МП, Шилова СА (2008) Разнокачественность особей как механизм поддержания стабильности популяционных структур. Успехи современной биологии 128: 307–320. [Moshkin MP, Shilova SA (2008) Raznokachestvennost' osobey kak mekhanizm podderzhaniya stabil'nosti populyatsionnykh struktur. Uspekhi sovremennoy biologii 128: 307–320].
- Drickamer LC, Gowaty PA, Wagner DM (2003) Free mutual mate preferences in house mice affect reproductive success and offspring performance. Animal Behaviour 65: 105–114. https://doi.org/10.1006/anbe.2002.2027
- Gowaty PA, Anderson WW, Bluhm CK, Drickamer LC, Kim YK, Moore AJ (2007) The hypothesis of reproductive compensation and its assumptions about mate preferences and offspring viability. Proc Nat Acad Sci 104: 15023–15027. https://doi.org/10.1073/pnas.0706622104
- Raveh S, Sutalo S, Thonhauser KE, Thoß M, Hettyey A, Winkelser F, Penn DJ (2014) Female partner preferences enhance offspring ability to survive an infection. BMC Evol Biol 14: 1–8. https://doi.org/10.1186/1471-2148-14-14
- Apanius V, Penn DJ, Slev PR, Ruff LR, Potts WK (2017) The nature of selection on the major histocompatibility complex. Critical Rev Immunol 37: 75–125. https://doi.org/10.1615/CritRevImmunol.v37.i2-6.10
- Dietz DM, LaPlant Q, Watts EL, Hodes GE, Russo SJ, Feng J, Oosting RS, Vialou V, Nestler EJ (2011) Paternal transmission of stress-induced pathologies. Biol Psychiatry 70: 408–414. https://doi.org/10.1016/j.biopsych.2011.05.005
- Gerlinskaya LA, Anisimova MV, Kontsevaya GV, Maslennikova SO, Romashchenko AV, Gong Y, Moshkin YM, Moshkin MP (2020) Mating with immunised male mice affects the phenotype of adult progeny. Reproduction 160: 117–127. https://doi.org/10.1530/REP-19-0360
- Dias BG, Ressler KJ (2014) Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat Neurosci 17: 89–96. https://doi.org/10.1038/nn.3594
- Ou XH, Zhu CC, Sun SC (2019) Effects of obesity and diabetes on the epigenetic modification of mammalian gametes. J Cel Physiol 234: 7847–7855. https://doi.org/10.1002/jcp.27847
- Curley JP, Mashoodh R, Champagne FA (2011) Epigenetics and the origins of paternal effects. Horm Behav 59: 306–314. https://doi.org/10.1016/j.yhbeh.2010.06.018
- Koyama S (2016) Primer Effects by Murine Pheromone Signaling: Pheromonal Influences on Reproductive Conditions. Springer.
- Alter MD, Gilani AI, Champagne FA, Curley JP, Turner JB, Hen R (2009) Paternal transmission of complex phenotypes in inbred mice. Biol Psychiatry 66: 1061–1066. https://doi.org/10.1016/j.biopsych.2009.05.026
- Gerlinskaya LA, Maslennikova SO, Anisimova MV, Feofanova NA, Zavjalov EL, Kontsevaya GV, Moshkin YM, Moshkin MP (2017) Modulation of embryonic development due to mating with immunised males. Reproduct Fertility Devel 29: 565–574. http://dx.doi.org/10.1071/RD15173
- Penn D, Potts WK (1998) Chemical signals and parasite-mediated sexual selection. Trends Ecol Evol 13: 391–396. https://doi.org/10.1016/S0169-5347(98)01473-6
- Dougherty LR (2020) Designing mate choice experiments. Biol Rev 95: 759–781. https://doi.org/10.1111/brv.12586
- Clutton-Brock TH (1988). Reproductive success: studies of individual variation in contrasting breeding systems. University of Chicago press.
- Crowcroft P, Rowe FP (1963) Social organization and territorial behaviour in the wild house mouse (Mus Musculus L.) Proceedings of the Zoological Society of London. Oxford, UK: Blackwell Publishing Ltd 140: 517–531. https://doi.org/10.1111/j.1469-7998.1963.tb01871.x
- Fang Q, Zhang YH, Shi YL, Zhang JH, Zhang JX (2016) Individuality and transgenerational inheritance of social dominance and sex pheromones in isogenic male mice. J Exper Zool Part B: Mol Dev Evol 326: 225–236. https://doi.org/10.1002/jez.b.22681
- Kruczek M (1997) Male rank and female choice in the bank vole, Clethrionomys glareolus. Behav Proc 40: 171–176. https://doi.org/10.1016/S0376-6357(97)00785-7
- Schwende FJ, Wiesler D, Jorgenson JW, Carmack M, Novotny M (1986) Urinary volatile constituents of the house mouse, Mus musculus, and their endocrine dependency. J Chem Ecol 12: 277–296. https://doi.org/10.1007/bf01045611
- Schaefer ML, Wongravee K, Holmboe ME, Heinrich NM, Dixon SJ, Zeskind JE, Kulaga HM, Brereton RG, Reed RR, Trevejo JM (2010) Mouse urinary biomarkers provide signatures of maturation, diet, stress level, and diurnal rhythm. Chem Senses 35: 459–471. https://doi.org/10.1093/chemse/bjq032
- Liu YJ, Guo HF, Zhang JX, Zhang YH (2017) Quantitative inheritance of volatile pheromones and darcin and their interaction in olfactory preferences of female mice. Sci Reports 7: 1–9. https://doi.org/10.1038/s41598-017-02259-1
- Khotskina AS, Zavjalov EL, Shnayder EP, Gerlinskaya LA, Maslennikova SO, Petrovskii DV, Baldin MN, Makas AL, Gruznov VM, Troshkov ML, Moshkin MP (2023) CD-1 mice females recognize male reproductive success via volatile organic compounds in urine. Vavilov J Gen Breeding 27: 480–487. https://doi.org/10.18699/VJGB-23-58
- Cora MC, Kooistra L, Travlos G (2015) Vaginal cytology of the laboratory rat and mouse: review and criteria for the staging of the estrous cycle using stained vaginal smears. Toxicol Pathol 43: 776–793. https://doi.org/10.1177/0192623315570339
- Gromski PS, Muhamadali H, Ellis DI, Xu Y, Correa E, Turner ML, Goodacre R (2015) A tutorial review: Metabolomics and partial least squares-discriminant analysis–a marriage of convenience or a shotgun wedding. Analyt Chimica Acta 879: 10–23. https://doi.org/10.1016/j.aca.2015.02.012
- Brereton RG, Lloyd GR (2014) Partial least squares discriminant analysis: taking the magic away. J Chemometrics 28: 213–225. https://doi.org/10.1002/cem.2609
- Hurst JL, Beynon R (2013) Rodent urinary proteins: genetic identity signals and pheromones. Chemical signals in vertebrates 12. Springer, New York, NY: 117–133. https://doi.org/10.1007/978-1-4614-5927-9_9
- Willse A, Belcher AM, Preti G, Wahl JH, Thresher M, Yang P, Yamazaki K, Beauchamp GK (2005) Identification of major histocompatibility complex-regulated body odorants by statistical analysis of a comparative gas chromatography/mass spectrometry experiment. Analytical Chemistry 77: 2348–2361. https://doi.org/10.1021/ac048711t
- Novotny MV, Soini HA, Koyama S, Wiesler D, Bruce KE, Penn DJ (2007) Chemical identification of MHC-influenced volatile compounds in mouse urine. I: Quantitative proportions of major chemosignals. J Chem Ecol 33: 417–434. https://doi.org/10.1007/s10886-006-9230-9
- Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM (2000) M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164: 6166–6173. https://doi.org/10.4049/jimmunol.164.12.6166
- Pellegrini A, Guiñazú N, Aoki MP, Calero IC, Carrera- Silva EA, Girones N, Fresno M, Gea S (200) Spleen B cells from BALB/c are more prone to activation than spleen B cells from C57BL/6 mice during a secondary immune response to cruzipain. Int Immunol 19: 1395–1402. https://doi.org/10.1093/intimm/dxm107
- Babochkina TI, Gerlinskaya LA, Anisimova MV, Kontsevaya GV, Feofanova NA, Stanova AK, Moshkin MP, Moshkin YM (2022) Mother–Fetus Immune Cross-Talk Coordinates “Extrinsic”/“Intrinsic” Embryo Gene Expression Noise and Growth Stability. Int J Mol Sci 23: 1–18. https://doi.org/10.3390/ijms232012467
- Lee AW, Emsley JG, Brown RE, Hagg T (2003) Marked differences in olfactory sensitivity and apparent speed of forebrain neuroblast migration in three inbred strains of mice. Neuroscience 118: 263–270. https://doi.org/10.1016/S0306-4522(02)00950-8
- Roberts SA, Prescott MC, Davidson AJ, McLean L, Beynon RJ, Hurst JL (2018) Individual odour signatures that mice learn are shaped by involatile major urinary proteins (MUPs). BMC Biol 16: 1–19. https://doi.org/10.1186/s12915-018-0512-9
- Moshkin MP, Kondratiuk EI, Litvinova EA, Gerlinskaia LA (2010) The activation of specific immunity in male mice stimulates fertility of their breeding partners: The phenomenon of Lot's daughters. Zhurnal obshchei biologii 71: 425–435. https://doi.org/10.1134/S2079086411010063
- Герлинская ЛА, Фролова ЮА, Кондратюк ЕЮ, Мошкин МП (2007) Затраты на маркировку и репродуктивный успех у самцов мышей лабораторной линии ICR. Журн общ биол 68: 296–306. [Gerlinskaya LA, Frolova YUA, Kondratyuk YEYU, Moshkin MP (2007) Zatraty na markirovku i reproduktivnyy uspekh u samtsov myshey laboratornoy linii ICR. Zhurn obshch biol 68: 296–306]
- Marshall DJ, Uller T (2007) When is a maternal effect adaptive? Oikos 116: 1957–1963. https://doi.org/10.1111/j.2007.0030-1299.16203.x
- Wang X, Miller DC, Harman R, Antczak DF, Clark AG (2013) Paternally expressed genes predominate in the placenta. Proc Nat Acad Sci 110: 10705–10710. https://doi.org/10.1073/pnas.130899811
- Denomme MM, Parks JC, McCallie BR, McCubbin NI, Schoolcraft WB, Katz-Jaffe MG (2020) Advanced paternal age directly impacts mouse embryonic placental imprintin. PLoS One 15: 1–13. https://doi.org/10.1371/journal.pone.0229904
Supplementary files
