MEMBRANE ELECTRICAL PROPERTIES AND SPIKE CHARACTERISTICS IN A PAIR OF IDENTIFIED ELECTRICALLY COUPLED LYMNAEA STAGNALIS NEURONS AT LONG-LASTING EXPERIMENTAL HYPERGLYCEMIA
- Authors: Sidorov A.V.1, Shadenko V.N.1,2
-
Affiliations:
- Belarusian State University
- Republican Research and Practice Center for Mental Health
- Issue: Vol 59, No 2 (2023)
- Pages: 131-142
- Section: EXPERIMENTAL ARTICLES
- URL: https://cijournal.ru/0044-4529/article/view/648040
- DOI: https://doi.org/10.31857/S0044452923020067
- EDN: https://elibrary.ru/BISOGU
- ID: 648040
Cite item
Abstract
Microelectrode technique was used to study the responses of identified peptide-containing cells VD1 and RPaD2 within isolated CNS of Lymnaea stagnalis to long-lasting (not less 2 h) exposure in D-glucose (10 mM) containing solution. It has been established that electrical characteristics of RPaD2 membrane, compared to VD1, undergo significant changes under experimental hyperglycemia. Decrease of membrane resistance (Rm), accompanied by an increase of membrane capacitance (Cm) and time constant (τm), were observed. Despite the invariance of their firing rate, depolarization of VD1 membrane take place, while RPaD2 membrane potential did not vary significantly. Modifications in time-course, but not amplitude, of VD1 and RPaD2 action potentials were similar and resulted in increase of their main phases (rising, falling, undershoot) duration. It is assumed that “identity” in membrane electrical properties of Lymnaea’s CNS neurosecretory neurons (VD1/RPaD2) at hyperglycemia plays an adaptive role, aimed to overcome the possible desynchronization of their spike activity as a result of electrical decoupling, initiated by a high glucose content in intercellular space.
Keywords
About the authors
A. V. Sidorov
Belarusian State University
Author for correspondence.
Email: sidorov@bsu.by
Belarus, Minsk
V. N. Shadenko
Belarusian State University; Republican Research and Practice Center for Mental Health
Email: sidorov@bsu.by
Belarus, Minsk; Belarus, Minsk
References
- Getting PA (1989) Emerging principles governing the operation of neural networks. Ann Rev Neurosci 12: 185–204. https://doi.org/10.1146/annurev.ne.12.030189.001153
- Marder E, Calabrese RL (1996) Principles of rhythmic motor pattern generation. Physiol Rev 76: 687–717. https://doi.org/10.1152/physrev.1996.76.3.687
- Skinner FK, Kopell N, Marder E (1994) Mechanisms for oscillation and frequency control in reciprocal inhibitory model neural networks. J Comput Neurosci 1: 69–87. https://doi.org/10.1007/BF00962719
- Grillner S (2006) Biological pattern generation: the cellular and computational logic of networks in motion. Neuron 52: 751–766. https://doi.org/10.1016/j.neuron.2006.11.008
- Berry MS, Pentreath VW (1977) The integrative properties of electrotonic synapses. Comp Biochem Physiol A 57: 289–295. https://doi.org/10.1016/0300-9629(77)90193-1
- Dickinson PS, Mecsas C, Marder E (1990) Neuropeptide fusion of two motor pattern generator circuits. Nature 344: 155–158. https://doi.org/10.1038/344155a0
- Tups A, Benzler J, Sergi D, Ladyman SR, Williams LM (2017) Central regulation of glucose homeostasis. Comp Physiol C 7: 741–764. https://doi.org/10.1002/cphy.c160015
- Steinbusch L, Labouèbe G, Thorens B (2015) Brain glucose sensing in homeostatic and hedonic regulation. Trends Endocrinol Metab 26: 455–466. https://doi.org/10.1016/j.tem.2015.06.005
- Bean BF (2007) The action potential in mammalian neurons. Nature Rev, Neuroscience 8: 451–461. https://doi.org/10.1038/nm2148
- Kennedy MB (2016) Synaptic signaling in learning and memory. Cold Spring Harbor Perspect Biol 8: a016824. https://doi.org/10.1101/cshperspect.a016824
- Kerkhoven RM, Croll RP, Van Minnen J, Bogerd J, Ramkema MD, Lodder H, Boer HH (1991) Axonal mapping of the giant peptidergic neurons VD1 and RPD2 located in the CNS of the pond snail Lymnaea stagnalis, with particular reference to the innervation of the auricle of the heart. Brain Res 565: 8–16. https://doi.org/10.1016/0006-8993(91)91730-O
- Bogerd J, Geraerts WP, Van Heerikhuizen H, Ker-khoven RM, Joosse J. (1991) Characterization and evolutionary aspects of a transcript encoding a neuropeptide precursor of Lymnaea neurons, VD1 and RPD2. Brain Res Mol Brain Res 11: 47–54. https://doi.org/10.1016/0169-328x(91)90020-x
- Sidorov AV, Shadenko VN (2021) Electrical activity of identified neurons in the central nervous system of a mollusk Lymnaea stagnalis under acute hyperglycemia. J Evol Biochem Physiol 56: 1257–1266. https://doi.org/10.1134/S0022093021060065
- Scheerboom JEM, Hemminga MA, Doderer A (1978) The effects of a change of diet on consumption and assimilation and on the haemolymph-glucose concentration of the pond snail Lymnaea stagnalis (L) Proc Kon Ned Akad Wet, Ser C 81:335–346.
- Benjamin PR, Winlow W (1981) The distribution of three wide-acting synaptic inputs to identified neurones in the isolated brain of Lymnaea stagnalis (L.) Comp Biochem Physiol 70A: 293–307. https://doi.org/10.1016/0300-9629(81)90182-1
- Солтанов ВВ, Бурко ВЕ (2005) Компьютерные программы обработки электрофизиологических данных. Новости мед.-биол. наук 1:91–95. [Soltanov VV, Burko VE (2005) Computer programs for electrophysiological data-processing. News of Biomed Sci 1: 91–95. (In Russ)].
- Benjamin PR, Pilkington JB (1986) The electrotonic location of low-resistance intercellular junctions between a pair of giant neurones in the snail Lymnaea. J Physiol 370: 111–126. https://doi.org/10.1113/jphysiol.1986.sp015925
- Mersman BA, Jolly SN, Lin Z and Xu F (2020) Gap Junction Coding Innexin in Lymnaea stagnalis: Sequence Analysis and Characterization in Tissues and the Central Nervous System. Front. Synaptic Neurosci 12: 1. https://doi.org/10.3389/fnsyn.2020.00001
- Scemes E, Spray DC, Meda P (2009) Connexins, pannexins, innexins: novel roles of “hemi-channels”. Pflugers Arch – Eur J Physiol 457: 1207–1226. https://doi.org/10.1007/s00424-008-0591-5
- Gorman ALF, Mirolli M. (1972). The passive electrical properties of the membrane of a molluscan neurone. J Physiol 227: 35–49. https://doi.org/10.1113/jphysiol.1972.sp010018
- Qazzaz MM, Winlow W (2017) Modulation of the Passive Membrane Properties of a Pair of Strongly Electrically Coupled Neurons by Anaesthetics. EC Neurology 6.4: 187–200.
- Copping J, Syed NI, Winlow W (2000) Seasonal plasticity of synaptic connections between identified neurones in Lymnaea. Acta Biol Hung 51: 205–210.
- Calabresi P, Marfia GA, Centonze D, Pisani A, Bernardi G. (1999) Sodium influx plays a major role in the membrane depolarization induced by oxygen and glucose deprivation in rat striatal spiny neurons. Stroke 30: 171–179. https://doi.org/10.1161/01.str.30.1.171
- Glowik RM, Golowasch J, Keller R, Marder E (1997) D-glucose-sensitive neurosecretory cells of the crab Cancer borealis and negative feedback regulation of blood glucose level. J Exp Biol 200: 1421–1431. https://doi.org/10.1242/jeb.200.10.1421
- Kandel ER (1976) Cellular basis of behavior: an introduction to behavioral neurobiology. San Francisco, W.H. Freeman.
- Bukauskas FF, Verselis VK (2004) Gap junction channel gating. Biochim Biophys Acta 1662: 42–60. https://doi.org/10.1016/j.bbamem.2004.01.008
- Sidorov AV (2012) Effect of hydrogen peroxide on electrical coupling between identified Lymnaea neurons. Invert Neurosci 12: 63–68. https://doi.org/10.1007/s10158-012-0128-7
- Bennett MV, Contreras JE, Bukauskas FF, Saez JC (2003) New roles for astrocytes: gap junction hemichannels have something to communicate. Trends Neurosci 26: 610–617. https://doi.org/10.1016/j.tins.2003.09.008
- Spray DC (1998) Gap junction proteins: where they live and how they die. Circ Res 83: 679–681. https://doi.org/10.1161/01.res.83.6.679
- Kits KS, Bobeldijk RC, Crest M, Lodder JC (1991) Glucose-induced excitation in molluscan central neurons producing insulin-related peptides. Pflugers Arch 417: 597–604. https://doi.org/10.1007/BF00372957
- Сидоров АВ, Шаденко ВН (2022) Электрические характеристики сенсорного нейрона и оборонительные реакции моллюска Lymnaea stagnalis в условиях пролонгированной гипергликемии. Экспер биол биотехнол 1: 23–38. [Sidorov AV, Shaden-ko VN (2022) Electrical properties of the sensory neuron and defense reactions of mollusc Lymnaea stagnalis at conditions of prolonged hyperglycemia. Exper Biol Biotechnol 1: 23–38. (In Russ)].https://doi.org/10.33581/2957-5060-2022-1-23-38
- Floyd PD, Li L, Rubakhin SS, Sweedler JV, Horn CC, Kupfermann I, Alexeeva VY, Ellis TA, Dembrow NC, Weiss KR, Vilim FS (1999) Insulin prohormone processing, distribution, and relation to metabolism in Aplysia californica. J Neurosci 19: 7732–7741. https://doi.org/10.1523/JNEUROSCI.19-18-07732.1999
- Shevelkin AV (1994) Facilitation of defense reactions during the consumption of food in snails: the participation of glucose and gastrin/cholecystokinin-like peptide. Neurosci Behav Physiol 24: 115–124. https://doi.org/10.1007/BF02355661
- Burdakov D, Lesage F (2010) Glucose-induced inhibition: how many ionic mechanisms? Acta Physiol (Oxf) 198: 295–301. https://doi.org/10.1111/j.1748-1716.2009.02005.x
- Huang CW, Huang CC, Cheng JT, Tsai JJ, Wu SN (2007) Glucose and hippocampal neuronal excitability: role of ATP-sensitive potassium channels. J Neurosci Res 85: 1468–1477. https://doi.org/10.1002/jnr.21284
- Inoue I, Tsutsui I, Brown ER (1997) K+ accumulation and K+ conductance inactivation during action potential trains in giant axons of the squid Sepioteuthis. J Physiol 500: 355–366. https://doi.org/10.1113/jphysiol.1997.sp022026
- Ye R, Liu J, Jia Z, Wang H, Wang Y, Sun W, Wu X, Zhao Z, Niu B, Li X, Dai G, Li J (2016) Adenosine triphosphate (ATP) inhibits voltage-sensitive potassium currents in isolated Hensen’s cells and nifedipine protects against noise-induced hearing loss in guinea pigs. Med Sci Monit 22: 2006–2012. https://doi.org/10.12659/msm.898150
- Roubos EW, Moorer-Van Delft CM (1976) Morphometric in vitro analysis of the control of the activity of the neurosecretory dark green cells in the freshwater snail Lymnaea stagnalis (L.). Cell Tissue Res 174: 221–231. https://doi.org/10.1007/BF00222160
- Сидоров АВ (2022) Осмотическая концентрация в гемолимфе моллюска Lymnaea stagnalis при острой экспериментальной гипергликемии. Экспер биол биотехнол 3: 85–89. [Sidorov AV (2022) Hemolymph osmolality in mollusk Lymnaea stagnalis during acute experimental hyperglycemia. Exp Biol Biotechnol 1: 85–89. (In Russ)]. https://doi.org/10.33581/2957-5060-2022-3-85-89
- Сидоров АВ (2003) Влияние температуры на легочное дыхание, оборонительные реакции и локомоторное поведение пресноводного легочного моллюска Lymnaea stagnalis. Журн высш нерв деят им ИП Павлова. 53: 513–517. [Sidorov AV (2003) Effects of temperature on respiration, defensive behavior and locomotion of fresh-water snail Lymnaea stagnalis. Zhurn Vyssh Nervn Deyat Im IP Pavlova. 53: 513–517. (In Russ)].
- Crossley M, Staras K, Kemenes G (2018) A central control circuit for encoding perceived food value. Sci Adv 4: eaau9180. https://doi.org/10.1126/sciadv.aau9180
- Dyakonova V, Hernádi L, Ito E, Dyakonova T, Zakharov I, Sakharov D (2015) The activity of isolated snail neurons controlling locomotion is affected by glucose. Biophysics (Nagoya-shi) 11: 55–60. https://doi.org/10.2142/biophysics.11.55
Supplementary files
