Non-stationary delay of nonlinear oscillations of a magnetoelastic system under conditions of external excitation and initial magnetization offset

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The phenomenon of non-stationary delay in excitation of high-amplitude chaotic oscillations in a system of two coupled oscillators is considered. A brief description of two real physical systems that allow excitation of chaotic oscillations with non-stationary delay is given. It is shown that oscillations in both systems can be de-scribed based on the same model of two coupled oscillators, one of which is non-linear and the other is linear. A system of two second-order differential equations is given for such a model. This system is simplified while preserving the kernel that provides the effect of delay in high-amplitude chaotic oscillations. The possibility of replacing external excitation in the system with the initial displacement of one of the oscillators is considered.

Texto integral

Acesso é fechado

Sobre autores

A. Ivanov

Pitirim Sorokin Syktyvkar State University

Autor responsável pela correspondência
Email: alivaht@mail.ru
Rússia, Oktyabr’skii prosp., 55, Syktyvkar, Komi Republic, 167001

V. Shavrov

Kotel’nikov Institute of Radio Engineering and Electronics RAS

Email: alivaht@mail.ru
Rússia, Mokhovaya Str., 11, build. 7, Moscow, 125009

V. Shcheglov

Kotel’nikov Institute of Radio Engineering and Electronics RAS

Email: alivaht@mail.ru
Rússia, Mokhovaya Str., 11, build. 7, Moscow, 125009

Bibliografia

  1. Станкевич Н.В., Попова Е.С., Кузнецов А.П., Селезнев Е.П. // Письма в ЖТФ. 2019. Т. 45. № 24. С. 17.
  2. Шавров В.Г., Щеглов В.И. Динамика намагниченности в условиях изменения ее ориентации. М.: Физматлит, 2019.
  3. Власов В.С., Шавров В.Г., Щеглов В.И. // Журн. радиоэлектрон. 2020. № 6.: http://jre.cplire.ru/jre/jun20/14/text.pdf
  4. Вейсс М. Ферриты в нелинейных сверхвысокочастотных устройствах. М., 1961. С. 281.
  5. Моносов Я.А., Сурин В.В., Щеглов В.И. // Письма в ЖЭТФ. 1968. Т. 7. № 9. С. 315.
  6. Власов В.С., Котов Л.Н., Шавров В.Г., Щеглов В.И. // РЭ. 2009. Т. 54. № 7. С. 863.
  7. Власов В.С., Шавров В.Г., Щеглов В.И. // Журн. радиоэлектрон. 2013. № 2. http://jre.cplire.ru/jre/feb13/10/text.pdf
  8. Власов В.С., Шавров В.Г., Щеглов В.И. // РЭ. 2014. Т. 59. № 5. С. 482.
  9. Власов В.С., Иванов А.П., Шавров В.Г., Щеглов В.И. // Журн. радиоэлектрон. 2013. № 11. http://jre.cplire.ru/jre/nov13/3/text.pdf
  10. Шавров В.Г., Щеглов В.И., Иванов А.П. Нелинейные колебания в задаче возбуждения гиперзвука. Сыктывкар: ООО “Коми республиканская типография”, 2021.
  11. Иванов А.П., Шавров В.Г., Щеглов В.И. // Журн. радиоэлектрон. 2017. № 7. http://jre.cplire.ru/jre/jul17/6/text.pdf
  12. Иванов А.П., Шавров В.Г., Щеглов В.И. // Журн. радиоэлектрон. 2017. № 8. http://jre.cplire.ru/jre/aug17/5/text.pdf
  13. Иванов А.П., Шавров В.Г., Щеглов В.И. // Журн. радиоэлектрон. 2017. № 8. http://jre.cplire.ru/jre/aug17/6/text.pdf
  14. Иванов А.П., Шавров В.Г., Щеглов В.И. // Тр. XXVI Междунар. конф. “Электромагнитное поле и материалы (фундаментальные физические исследования”. Москва. 23–24 нояб. 2018. М.: ИНФРА-М, 2018. С. 243.
  15. Иванов А.П., Шавров В.Г., Щеглов В.И. // Журн. радиоэлектрон. 2020. № 8. http://jre.cplire.ru/jre/aug20/7/text.pdf

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Development of oscillations in time, derivatives of the displacement, and parametric portraits of the first oscillator in the cases of external excitation (left column) and initial displacement (right column). Constructions (a), (c), (d) correspond to the solution of system (3)–(4), and constructions (b), (d), (e) – to the solution of system (6)–(7). Parameters of constructions (a), (c), (e): ω1 = 5; ω2 = 15; β1 = 1; β2 = 0.1; γ1 = 10; γ2 = 10; δ = 5; η = −200; A = 70; ω0 = 5; x10 = x20 = 0; . Parameters of constructions (b), (d), (e): ω1 = 5; ω2 = 15; β1 = 0; β2 = 0; γ1 = 10; γ2 = 10; δ = 5; η = −200; A = 0; ω0 – arbitrary; x10 = 2.16; x20 = 0;.

Baixar (387KB)
3. Fig. 2. Development of oscillations in time, derivatives of the displacement, and parametric portraits of the second oscillator in the cases of external excitation (left column) and initial displacement (right column). Constructions (a), (c), (d) correspond to the solution of system (3)–(4), and constructions (b), (d), (e) – to the solution of system (6)–(7). Parameters of constructions (a), (c), (e): ω1 = 5; ω2 = 15; β1 = 1; β2 = 0.1; γ1 = 10; γ2 = 10; δ = 5; η = −200; A = 70; ω0 = 5; x10 = x20 = 0; . Parameters of constructions (b), (d), (e): ω1 = 5; ω2 = 15; β1 = 0; β2 = 0; γ1 = 10; γ2 = 10; δ = 5; η = −200; A = 0; ω0 – arbitrary; x10 = 2.16; x20 = 0;.

Baixar (482KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025