Diagnostics of a high-current non-sputtering magnetron discharge in hydrogen

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The experiments were carried out to characterize plasma of a non-sputtering millisecond discharge in hydrogen at a pressure of ~ 1 Torr, pulse duration and a maximum impulse power near 1 ms and 80 kW, correspondingly. It has been demonstrated that the implementation of impulse non-sputtering modes of a magnetron discharge in light gases enables generation of dense non-constricted plasma with no lines of cathode or anode material present in its optical emission spectra.

Sobre autores

A. Kaziev

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute); Lebedev Physical Institute of RAS

Autor responsável pela correspondência
Email: kaziev@plasma.mephi.ru
Rússia, 31 Kashirskoe sh., Moscow, 115409; 53 Leninskiy prosp., Moscow, 119991

D. Kolodko

aNational Research Nuclear University MEPhI (Moscow Engineering Physics Institute),
31 Kashirskoe sh., Moscow, 115409 Russian Federation
bLebedev Physical Institute of RAS, 53 Leninskiy prosp., Moscow, 119991 Russian Federation
сKotelnikov Institute of Radioengineering and Electronics of RAS, Fryazino Branch,
1 Vvedenskogo pl., Fryazino, Moscow Region, 141190 Russian Federation

Email: kaziev@plasma.mephi.ru
Rússia, Каширское шоссе, 31, Москва, 115409; Ленинский просп., 53, Москва, 119991; пл. Введенского, 1, Фрязино, Московская обл., 141190

N. Sazonov

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: kaziev@plasma.mephi.ru
Rússia, 31 Kashirskoe sh., Moscow, 115409

M. Kharkov

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: kaziev@plasma.mephi.ru
Rússia, 31 Kashirskoe sh., Moscow, 115409

A. Tumarkin

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: kaziev@plasma.mephi.ru
Rússia, 31 Kashirskoe sh., Moscow, 115409

Bibliografia

  1. Мозгрин Д. В., Ходаченко Г. В., Фетисов И. К.// Физика плазмы. 1995. Т. 21. № 5. P. 422.
  2. Gudmundsson J. T., Brenning N., Lundin D., Helmersson U. // J. Vac. Sci. Technol. A. 2012. V. 30. № 3. P. 030801.
  3. Ходаченко Г. В., Мозгрин Д. В., Фетисов И. К., Степанова Т. В.// Физика плазмы. 2012. Т. 38. № 1. С. 71.
  4. Kaziev A. V. // Vacuum. 2018. V. 158. P. 191.
  5. Sommerer T. J., Aceto S. C., Trotter J. F. et al. // J. Phys. D: Appl. Phys. 2019. V. 52. № 43. P. 435202.
  6. Smith D. J., Sommerer T. J., Lawler J. E., Hitchon W. N. G. // J. Phys. D: Appl. Phys. 2021. V. 54. № 29. P. 295201.
  7. Levko D., Raja L. L. // J. Appl. Phys. 2022. V. 132. № 24. P. 243301.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024