Evaluation of the capacity of Rate-Splitting Multiple Access communication systems

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The Rate-Splitting Multiple Access (RSMA) method for multi-antenna communication systems is described. The sequence of operations for RSMA signal formation and processing is presented. RSMA usage scenarios in communication systems are considered, and the efficiency of this method is substantiated. Capacity estimates of the RSMA method are obtained in comparison with other multiple access methods. Numerical modeling of the average capacity per user is conducted using the QuaDRiGa tool. It is shown that RSMA achieves higher capacity compared to other multiple access methods used in multi-antenna communication systems.

Palavras-chave

Sobre autores

D. Pokamestov

Tomsk State University of Control Systems and Radioelectronics

Autor responsável pela correspondência
Email: dmaltomsk@mail.ru
Rússia, prosp. Lenina, 40, Tomsk, 634050

А. Filatov

Tomsk State University of Control Systems and Radioelectronics

Email: dmaltomsk@mail.ru
Rússia, prosp. Lenina, 40, Tomsk, 634050

Ya. Kryukov

Tomsk State University of Control Systems and Radioelectronics

Email: dmaltomsk@mail.ru
Rússia, prosp. Lenina, 40, Tomsk, 634050

А. Shinkevich

Tomsk State University of Control Systems and Radioelectronics

Email: dmaltomsk@mail.ru
Rússia, prosp. Lenina, 40, Tomsk, 634050

G. Shalin

Tomsk State University of Control Systems and Radioelectronics

Email: dmaltomsk@mail.ru
Rússia, prosp. Lenina, 40, Tomsk, 634050

Е. Rogozhnikov

Tomsk State University of Control Systems and Radioelectronics

Email: dmaltomsk@mail.ru
Rússia, prosp. Lenina, 40, Tomsk, 634050

Bibliografia

  1. Chowdhury M.Z., Shahjalal Md, Ahmed Sh., Jang Y.M. // IEEE Open J. Commun. Soc. 2020. V. 1. P. 957.
  2. Покаместов Д.А., Крюков Я.В., Абенов Р.Р. и др. // РЭ. 2024. Т. 1. № 1. С. 33.
  3. Saito Y., Kishiyama Y., Benjebbour A. et al. // Proc. 2013 IEEE77th Vehicular Technology Conf. (VTC Spring). Dresden. 2–5. Jun. N.Y.: IEEE, 2013. Paper No. 6692652.
  4. Nikopour H., Baligh H. // Proc. 2013 IEEE24th Annual Int. Symp. on Personal, Indoor and Mobile Radio Commun. (PIMRC). London. 8–11 Sept. N.Y.: IEEE, 2013. P. 332.
  5. Chen S., Ren B., Gao Q. // IEEE Trans. 2016. V. VT-66. № 4. P. 3185.
  6. Cover T. // IEEE Trans. 1972. V. IF-18. № 1. P. 2.
  7. Kryukov Y.V., Pokamestov D.A., Rogozhnikov E.V. // Int. J. Commun. Systems. 2024. V. 37. № 2. P. 5642.
  8. Pokamestov D.A., Kryukov Ya.V., Rogozhnikov E.V. et al. // Symmetry. 2022. V. 14. № 10. P. 2103.
  9. Anwar A., Seet B.C., Hasan M.A., Li X.J. // Electronics. 2019. V. 8, № 11, P. 1355.
  10. Liu Y., Zhang S., Mu X., Ding Z. et al. // IEEE J. Selected Areas in Commun. 2022. V. 40. № 4. P. 1037.
  11. Zeng M., Yada A., Dobre O.A., Tsiropoulos G.I., Poor H. V. // IEEE Wireless Commun. Lett. 2017. V. 6. № 4. P. 534.
  12. Clerckx B., Mao Y., Schober R. et al. // IEEE Open J. Commun. Soc. 2021. V. 2. P. 1310.
  13. Kimy B., Lim S., Kim H. et al. // Proc. MILCOM 2013–2013 IEEE Military Commun. Conf. San Diego.8–11 Nov. N.Y.: IEEE, 2013. P. 1278.
  14. Mao Y., Clerckx B., Li V.O.K. // EURASIP J. Wireless Commun. and Networking. 2018. V. 2018. Article No. 133.
  15. Han T., Kobayashi K. // IEEE Trans. 1981. V. IT-27. № 1. P. 49.
  16. Mao Y., Dizdar O., Clerckx B. et al. // IEEE Commun. Surveys & Tutorials. 2022. V. 24. № 4. P. 2073.
  17. Dizdar O., Mao Y., Han W., Clerckx B. // Proc. 2020 IEEE92nd Vehicular Technology Conf. (VTC2020-Fall). Victoria. 18 Nov.-16 Dec. N.Y.: IEEE, 2020. Paper No. 9348672.
  18. Clerckx B., Mao Y., Jorswieck E.A. et al. // IEEE J. Selected Areas in Commun. 2023. V. 41. № 5. P. 1265.
  19. Schroeder A., Roeper M., Wuebben D. et al. // Proc. 26th Int. ITG Workshop on Smart Antennas and 13th Conf. on Systems, Commun. and Coding). Braunschweig. 27 Feb. N.Y.: IEEE, 2023. P. 1.
  20. Chopra G. // Proc. 2023 Int. Conf. on Emerging Smart Computing and Informatics (ESCI). Pune/ 0–03 Mar. N.Y.: IEEE, 2023. Paper No. 10100245
  21. Jaeckel S., Raschkowski L., Börner K., Thiele L. // IEEE Trans. 2014. V. AP-62. № 6. P. 3242.
  22. Kumar J., Gupta A., Tanwar S., Khan M.K. // Physical Commun.2024. V. 67. Article No. 102488.
  23. Spencer Q.H., Swindlehurst A.L., Haardt M. // IEEE Trans. 2004. V. SP-52. № 2. P. 461.
  24. Lee B., Shin W., Poor H.V. // Proc. 2021 Int. Conf. on Information and Commun. Technology Convergence (ICTC). Jeju Island. 20–22 Oct. N.Y.: IEEE, 2021. P. 218.
  25. Jiang H., Mukherjee M., Zhou J., Lloret J. // IEEE Network. 2020. V. 35. № 1. P. 296.
  26. Zhang J.H., Tang P., Yu L. et al. // Frontiers of Information Technology & Electronic Engineering. 2020. V. 21. № 1. P. 39.
  27. G. Study on Channel Model for Frequencies from 0.5 to 100 GHz. 3GPP Technical Report. 38.901 V. 17.1.0. 2024. Sophia Antipolis Cedex: ETSI, 2024. 99 p.
  28. Clerckx B., Mao Y., Schober R., Poor H.V. // IEEE Wireless Commun. Lett. 2019. V. 9. № 3. P. 349.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025